मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Derive Laplace’S Law for Spherical Membrane of Bubble Due to Surface Tension. - Physics

Advertisements
Advertisements

प्रश्न

Derive Laplace’s law for spherical membrane of bubble due to surface tension.

Derive Laplace’s law for a spherical membrane.

व्युत्पत्ती
बेरीज

उत्तर १

Consider a spherical liquid drop and let the outside pressure be Po and inside pressure be Pi, such that the excess pressure is Pi − P

Let the radius of the drop increase from r to Δr, where Δr is very small, so that the pressure inside the drop remains almost constant.

Initial surface area (A1) = 4Πr2

Final surface area (A2) = 4Π(r + Δr)2

                                     = 4π(r2 + 2rΔr + Δr2)

                                     = 4Πr2 + 8ΠrΔr + 4ΠΔr2

As Δr is very small, Δr2 is neglected (i.e. 4πΔr2≅0) 

Increase in surface area (dA) =A2 - A1= 4Πr2 + 8ΠrΔr - 4Πr2  

Increase in surface area (dA) =8ΠΔr

Work done to increase the surface area by 8ΠrΔr is extra energy.

∴ dW = TdA

∴ dW = T*8πrΔr         .......(Equ.1)

This work done is equal to the product of the force and the distance Δr.

dF=(P1 - P0)4πr

The increase in the radius of the bubble is Δr.

dW = dFΔr = (P1 - P0)4Πr2*Δr  ..........(Equ.2)

Comparing Equations 1 and 2, we get

(P1 - P0)4πr2*Δr = T*8πrΔr 

∴`(P_1 - P_0) = (2T)/R`

This is called Laplace’s law of spherical membrane.  

shaalaa.com

उत्तर २

  1. The free surface of drops or bubbles is spherical in shape.
    Let,
    Pi = inside pressure of a drop or air bubble
    Po = outside pressure of the bubble
    r = radius of drop or bubble.
  2. As drop is spherical, Pi > Po
    ∴ excess pressure inside drop = Pi − P
  3. Let the radius of drop increase from r to r + ∆r so that inside pressure remains constant.
  4. Initial area of drop A1 = 4πr2 ,
    Final surface area of drop A2 = 4π (r + ∆r)
    Increase in surface area,
    ∆A = A2 − A1 = 4π[(r + ∆r)2 − r2]
    = 4π[r2 + 2r∆r + ∆r2 − r2]
    = 8πr∆r + 4π∆r2
  5. As ∆r is very small, the term containing ∆r2 can be neglected.
    ∴ dA = 8πr∆r
  6. Work is done by a force of surface tension,
    dW = TdA = (8πr∆r)T ….(1)
    This work done is also equal to the product of the force F which causes an increase in the area of the bubble and the displacement Δr which is the increase in the radius of the bubble.
    ∴ dW = FΔr
    The excess force is given by,
    (Excess pressure) × (Surface area)
    ∴ F = (Pi – Po) × 4πr
    ∴ dF = (Pi – Po)A
    dW = F∆r = (Pi − Po) A∆r
    From equation (1),
    (Pi − Po) A∆r = (8πr∆r) T
    ∴ Pi − Po = `(8pirDeltarT)/(4pir^2Deltar)` ........(∵ A = 4πr2)
    ∴ Pi − Po = `(2T)/r` ….(2)

Equation (2) represents Laplace’s law of spherical membrane. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Mechanical Properties of fluids - Long Answer

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Derive an expression for excess pressure inside a drop of liquid.


A raindrop of diameter 4 mm is about to fall on the ground. Calculate the pressure inside the raindrop. [Surface tension of water T = 0.072 N/m, atmospheric pressure = 1.013 x 105 N/m2 ]


Draw a neat labelled diagram showing forces acting on the meniscus of water in a capillary tube.


Define the angle of contact.


'n' droplets of equal size of radius r coalesce to form a bigger drop of radius R. The energy liberated is equal to...................

(T =Surface tension of water)

`(a) 4piR^2T[n^(1/3)-1]`

`(b) 4pir^2T[n^(1/3)-1]`

`(c) 4piR^2T[n^(2/3)-1]`

`(d)4 pir^2T[n^(2/3)-1]`


Explain why Surface tension of a liquid is independent of the area of the surface


Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube of radius 1.00 mm made of this glass is dipped in a trough containing mercury. By what amount does the mercury dip down in the tube relative to the liquid surface outside? Surface tension of mercury at the temperature of the experiment is 0.465 N m–1. Density of mercury = 13.6 × 103 kg m–3


The total free surface energy of a liquid drop is `pisqrt2` times the surface tension of the liquid. Calculate the diameter of the drop in S.l. unit.


In a conical pendulum, a string of length 120 cm is fixed at rigid support and carries a mass
of 150 g at its free end. If the mass is revolved in a horizontal circle of radius 0.2 m around a
vertical axis, calculate tension in the string (g = 9.8 m/s2)


Show that the surface tension of a liquid is numerically equal to the surface energy per unit
area.


A uniform vertical tube of circular cross section contains a liquid. The contact angle is 90°. Consider a diameter of the tube lying in the surface of the liquid. The surface to the right of this diameter pulls the surface on the left of it. What keeps the surface on the left in equilibrium?


If a mosquito is dipped into water and released, it is not able to fly till it is dry again. Explain 


By a surface of a liquid we mean


If two soap bubbles of different radii are connected by a tube,


Which of the following graphs may represent the relation between the capillary rise hand the radius r of the capillary?


A 20 cm long capillary tube is dipped in water. The water rises up to 8 cm. If the entire arrangement is put in a freely falling elevator, the length of water column in the capillary tube will be


A liquid is contained in a vertical tube of semicircular cross section. The contact angle is zero. The force of surface tension on the curved part and on the flat part are in ratio


Consider a small surface area of 1 mm2 at the top of a mercury drop of radius 4.0 mm. Find the force exerted on this area (a) by the air above it (b) by the mercury below it and (c) by the mercury surface in contact with it. Atmospheric pressure = 1.0 × 105 Pa and surface tension of mercury = 0.465 N m−1.  Neglect the effect of gravity. Assume all numbers to be exact.


The capillaries shown in figure have inner radii 0.5 mm, 1.0 mm and 1.5 mm respectively. The liquid in the beaker is water. Find the heights of water level in the capillaries. The surface tension of water is 7.5 × 10−2 N m−1


The lower end of a capillary tube of radius 1 mm is dipped vertically into mercury. (a) Find the depression of mercury column in the capillary. (b) If the length dipped inside is half the answer of part (a), find the angle made by the mercury surface at the end of the capillary with the vertical. Surface tension of mercury = 0.465 N m−1 and the contact angle of mercury with glass −135 °.


A wire forming a loop is dipped into soap solution and taken out so that a film of soap solution is formed. A loop of 6.28 cm long thread is gently put on the film and the film is pricked with a needle inside the loop. The thread loop takes the shape of a circle. Find the tension the the thread. Surface tension of soap solution = 0.030 N m−1.


Find the force exerted by the water on a 2 m2 plane surface of a large stone placed at the bottom of a sea 500 m deep. Does the force depend on the orientation of the surface?


A cubical box is to be constructed with iron sheets 1 mm in thickness. What can be the minimum value of the external edge so that the cube does not sink in water? Density of iron = 8000 kg/m3 and density of water = 1000 kg/m3.


A cubical block of wood weighing 200 g has a lead piece fastened underneath. Find the mass of the lead piece which will just allow the block to float in water. Specific gravity of wood is 0.8 and that of lead is 11.3. 


A hollow spherical body of inner and outer radii 6 cm and 8 cm respectively floats half-submerged in water. Find the density of the material of the sphere.


A solid sphere of radius 5 cm floats in water. If a maximum load of 0.1 kg can be put on it without wetting the load, find the specific gravity of the material of the sphere.


Explain the capillary action.


Calculate the rise of water inside a clean glass capillary tube of radius 0.1 mm, when immersed in water of surface tension 7 × 10-2 N/m. The angle of contact between water and glass is zero, the density of water = 1000 kg/m3, g = 9.8 m/s2.


Two soap bubbles have a radius in the ratio of 2:3. Compare the works done in blowing these bubbles.  


Obtain an expression for the capillary rise or fall using the forces method.  


Numerical Problem.

A stone weighs 500 N. Calculate the pressure exerted by it if it makes contact with a surface of area 25 cm2.


How does the friction arise between the surfaces of two bodies in relative motion?


How does surface tension help a plant?


Mention the S.I unit and dimension of surface tension.


What is capillarity?


A capillary of diameter d mm is dipped in water such that the water rises to a height of 30 mm. If the radius of the capillary is made `(2/3)` of its previous value, then compute the height up to which water will rise in the new capillary?


A spherical soap bubble A of radius 2 cm is formed inside another bubble B of radius 4 cm. Show that the radius of a single soap bubble which maintains the same pressure difference as inside the smaller and outside the larger soap bubble is lesser than the radius of both soap bubbles A and B.


Why coffee runs up into a sugar lump (a small cube of sugar) when one corner of the sugar lump is held in the liquid?


The surface tension of the two liquids is respectively 20 and 60 dyne cm-1. The liquids drop from the ends of two tubes of the same radius. The ratio of the weights of the two drops is ______


Water rises upto a height h in a capillary tube on the surface of the earth. The value of h will increase, if the experimental setup is kept in [g = acceleration due to gravity]


A molecule of water on the surface experiences a net ______.


A water drop of radius R' splits into 'n' smaller drops, each of radius 'r'. The work done in the process is ______.

T = surface tension of water


Why is raindrop spherical in nature?


The free surface of oil in a tanker, at rest, is horizontal. If the tanker starts accelerating the free surface will be titled by an angle θ. If the acceleration is a ms–2, what will be the slope of the free surface?


If a drop of liquid breaks into smaller droplets, it results in lowering of temperature of the droplets. Let a drop of radius R, break into N small droplets each of radius r. Estimate the drop in temperature.


Surface tension is exhibited by liquids due to force of attraction between molecules of the liquid. The surface tension decreases with increase in temperature and vanishes at boiling point. Given that the latent heat of vaporisation for water Lv = 540 k cal kg–1, the mechanical equivalent of heat J = 4.2 J cal–1, density of water ρw = 103 kg l–1, Avagadro’s No NA = 6.0 × 1026 k mole–1 and the molecular weight of water MA = 18 kg for 1 k mole.

  1. Estimate the energy required for one molecule of water to evaporate.
  2. Show that the inter–molecular distance for water is `d = [M_A/N_A xx 1/ρ_w]^(1/3)` and find its value.
  3. 1 g of water in the vapor state at 1 atm occupies 1601 cm3. Estimate the intermolecular distance at boiling point, in the vapour state.
  4. During vaporisation a molecule overcomes a force F, assumed constant, to go from an inter-molecular distance d to d ′. Estimate the value of F.
  5. Calculate F/d, which is a measure of the surface tension.

Eight droplets of water each of radius 0.2 mm coalesce into a single drop. Find the decrease in the surface area.


A liquid flows out drop by drop from a vessel through a vertical tube with an internal diameter of 2 mm, then the total number of drops that flows out during 10 grams of the liquid flow out ______. [Assume that the diameter of the neck of a drop at the moment it breaks away is equal to the internal diameter of tube and surface tension is 0.02 N/m].


In a U-tube, the radii of two columns are respectively r1 and r2. When a liquid of density ρ(θ = 0°) is filled in it, a level difference of h is observed on two arms, then the surface tension of the liquid is ______.


The excess pressure inside a liquid drop is 500 Nm-2. If the radius of the drop is 2 mm, the surface tension of the liquid is x × 10-3 Nm-1. The value of x is ______.


A spherical liquid drop of radius R is divided into eight equal droplets. If surface tension is T, then the work done in this process will be ______.


Define angle of contact.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×