मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

In the figure, segment PQ is the diameter of the circle with center O. The tangent to the tangent circle drawn from point C on it, intersects the tangents drawn from points P and Q at points A and B - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In the figure, segment PQ is the diameter of the circle with center O. The tangent to the tangent circle drawn from point C on it, intersects the tangents drawn from points P and Q at points A and B respectively, prove that ∠AOB = 90°

आकृती
बेरीज

उत्तर

Given: PQ is the diameter of the circle.

Point P, Q, C are points of contact of the respective tangents.

To prove: ∠AOB = 90°

Construction: Draw seg OC

Proof:
In ∆OPA and ∆OCA,

side OP ≅ side OC    ......[Radii of the same circle]

side OA ≅ side OA   ......[Common side]

side PA ≅ side CA   ......[Tangent segment theorem]

∴ ∆OPA ≅ ∠OCA   .....[[SSS test of congruency]

∴ ∠AOP ≅ ∠AOC   ......[C.A.C.T.]

Let m∠AOP = m∠AOC = x   ......(i)

Similarly, we can prove that ∠BOC ≅ ∠BOQ.

Let m∠BOC = m∠BOQ = y   ......(ii)

m∠AOP + m∠AOC + m∠BOC + m∠BOQ = 180°  .....[Linear angles]

∴ x + x + y + y = 180°    ......[From (i) and (ii)]

∴ 2x + 2y = 180°

∴ 2(x + y) = 180°

∴ x + y = 90°  ......(iii)

Now ∠AOB = ∠AOC + ∠BOC

= x + y   ......[From (i) and (ii)]

∴ ∠AOB = ∠AOC + ∠BOC

= x + y    

∴ ∠AOB = 90°   .....[From (iii)] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Circle - Q.7

संबंधित प्रश्‍न

From a point P, 10 cm away from the centre of a circle, a tangent PT of length 8 cm is drawn. Find the radius of the circle.


If AB, AC, PQ are tangents in Fig. and AB = 5cm find the perimeter of ΔAPQ.


In the given figure, BC is a tangent to the circle with centre O. OE bisects AP. Prove that ΔAEO~Δ ABC.


In the given figure, AB is a side of a regular six-sided polygon and AC is a side of a regular eight-sided polygon inscribed in the circle with centre O. Calculate the sizes of:

  1. ∠AOB, 
  2. ∠ACB,
  3. ∠ABC.


A circle is inscribed in a ΔABC touching AB, BC and AC at P, Q and R respectively. If AB = 10 cm, AR=7cm and CR=5cm, find the length of BC.


In the given figure, if ABC is an equilateral triangle. Find ∠BDC and ∠BEC.


AB and CD are two equal chords of a drde intersecting at Pas shown in fig. P is joined to O , the centre of the cirde. Prove that OP bisects  ∠ CPB. 


If all the sides of a parallelogram touch a circle, show that the parallelogram is a rhombus.


Find the area of the shaded region in the figure If ABCD is a rectangle with sides 8 cm and 6 cm and O is the centre of the circle. (Take π= 3.14)


Draw a circle of radius 3.6 cm. In the circle, draw a chord AB = 5 cm. Now shade the minor segment of the circle.


Draw circle with the radii given below.

3 cm


The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle


All the radii of a circle are _______________


In the figure, O is the center of the circle. Line AQ is a tangent. If OP = 3, m(arc PM) = 120°, then find the length of AP.


In figure, tangents PQ and PR are drawn to a circle such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ. Find the ∠RQS.

[Hint: Draw a line through Q and perpendicular to QP.]


The tangent at a point C of a circle and a diameter AB when extended intersect at P. If ∠PCA = 110°, find ∠CBA see figure


From the figure, identify three radii.

 


Assertion (A): If the circumference of a circle is 176 cm, then its radius is 28 cm.

Reason (R): Circumference = 2π × radius of a circle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×