मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

In the given figure, if O is the center of the circle, PQ is a chord. ∠ POQ = 90°, area of the shaded region is 114 cm2, find the radius of the circle. π = 3.14) - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

A chord PQ of a circle with a radius of cm subtends an angle of 60° with the center of the circle. Find the area of the minor as well as the major segment. ( \[\pi\] = 3.14,  \[\sqrt{3}\] = 1.73)

बेरीज

उत्तर

The radius of the circle, r = 15 cm
Let O be the center and PQ be the chord of the circle. 

 

∠POQ = θ = 60º
Area of the minor segment = Area of the shaded region

\[= r^2 \left( \frac{\pi\theta}{360°} - \frac{\sin\theta}{2} \right)\]
\[ = \left( 15 \right)^2 \times \left( \frac{3 . 14 \times 60° }{360° } - \frac{\sin60° }{2} \right)\]
\[ = 225 \times \frac{3 . 14}{6} - 225 \times \frac{\sqrt{3}}{4}\]
\[ = 117 . 75 - 97 . 31\]
\[ = 20 . 44 {cm}^2\]

Now,
Area of the circle = 

\[\pi r^2 = 3 . 14 \times \left( 15 \right)^2 = 3 . 14 \times 225\]  = 706.5 cm2
∴ Area of the major segment = Area of the circle − Area of the minor segment = 706.5 − 20.44 = 686.06 cm2
Thus, the areas of the minor segment and major segment are 20.44 cm2 and 686.06 cm2, respectively.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Mensuration - Practice set 7.4 [पृष्ठ १६०]

संबंधित प्रश्‍न

In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find:

(i) The length of the arc

(ii) Area of the sector formed by the arc

(iii) Area of the segment forced by the corresponding chord

[use Π = 22/7]


To warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle 80° to a distance of 16.5 km. Find the area of the sea over which the ships warned. [Use π = 3.14]


A sector of circle of radius 4cm contains an angle of 30°. Find the area of sector


The diagram shows a sector of circle of radius ‘r’ can containing an angle 𝜃. The area of sector is A cm2 and perimeter of sector is 50 cm. Prove that

(i) 𝜃 =`360/pi(25/r− 1)`

(ii) A = 25r – r2

 


AB is a chord of a circle with centre O and radius 4 cm. AB is of length 4 cm and divides the circle into two segments. Find the area of the minor segment.


A chord of a circle subtends an angle 𝜃 at the centre of circle. The area of the minor segment cut off by the chord is one eighth of the area of circle. Prove that 8 sin`theta/2 "cos"theta/2+pi =(pitheta)/45`


In the given figure, radius of circle is 3.4 cm and perimeter of sector P-ABC is 12.8 cm . Find A(P-ABC). 


∆LMN is an equilateral triangle. LM = 14 cm. As shown in the figure, three sectors are drawn with vertices as centers and radius 7 cm. 
Find,
(1) A (∆LMN)
(2) Area of any one of the sectors
(3) Total area of all the three sectors
(4) Area of the shaded region

In the given figure, if O is the centre of the circle, PQ is a chord. \[\angle\] POQ = 90°, area of shaded region is 114 cm2 , find the radius of the circle. \[\pi\] = 3.14)

 


The radius of a circle is 17.5 cm. Find the area of the sector enclosed by two radii and an arc 44 cm in length.


In the given figure, ABCD is a square of side 7 cm, DPBA and DQBC are quadrants of circles each of the radius 7 cm. Find the area of shaded region.


In the given figure, find the area of the shaded region, where ABCD is a square of side 14 cm and all circles are of the same diameter.


A park is in the form of a rectangle 120 m by 90 m. At the centre of the park there is a circular lawn as shown in the figure. The area of the park excluding the lawn is 2950 m2. Find the radius of the circular lawn.


The radius of a circle with centre O is 7 cm. Two radii OA and OB are drawn at right angles to each other. Find the areas of minor and major segments.


In the following figure, if m(arc DXE) = 120° and m(arc AYC) = 60°. Find ∠DBE.


If angle of sector is 60°, radius is 3.5 cm then length of the arc is ____________.


Sides of a triangular field are 15 m, 16 m and 17 m. With the three corners of the field a cow, a buffalo and a horse are tied separately with ropes of length 7 m each to graze in the field. Find the area of the field which cannot be grazed by the three animals.


Radius of a circle is 10 cm. Measure of an arc of the circle is 54°. Find the area of the sector associated with the arc. (π = 3.14)

Given: The radius of a circle (r) = `square`

Measure of an arc of the circle (θ) = `square`

Area of the sector = `θ/360^circ xx square`

= `square/360^circ xx square xx square xx square`

= `square xx square xx square`

= 47.10 cm2


In the given figure, arcs have been drawn of radius 7 cm each with vertices A, B, C and D of quadrilateral ABCD as centres. Find the area of the shaded region.


Find the area of the unshaded region shown in the given figure.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×