Advertisements
Advertisements
प्रश्न
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/sqrt2)`
उत्तर
माना y `= "cos" ^-1 (-1/sqrt2)`
`Rightarrow "cos y" = -1/sqrt2 = - "cos" pi/4 = "cos" (pi - pi/4)`
`therefore "cos y = cos" (3pi)/4`
फलन `"cos"^-1 "x"` का मुख्य मान शाखा का परिसर `= [0, pi]` है।
`(3pi)/4 ∈ [0, pi]`
cos `((3pi)/4) = - 1/sqrt2`
अतः `"cos" ^-1 (-1/sqrt2) = (3pi)/4` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cos"^-1 (sqrt3/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"tan" ^-1 (-1)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"sec"^-1 (2/sqrt3)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cot" ^-1 (sqrt3)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (- sqrt2)`
निम्नलिखित के मान ज्ञात कीजिए:
`"tan"^-1 (1) + "cos"^-1 (-1/2) + "sin"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (1/2) + 2 "sin"^-1 (1/2)`
`"tan"^-1 sqrt 3 - "sec"^-1 (-2)` का मान बराबर है
निम्नलिखित के मान ज्ञात कीजिए:
`tan^-1(tan (7pi)/6)`
सिद्ध कीजिए:
`2sin^-1 3/5 = tan^-1 24/7`
सिद्ध कीजिए:
`cos^-1 4/5 + cos^-1 12/13 = cos^-1 33/65`
सिद्ध कीजिए:
`cos^-1 12/13 + sin^-1 3/5 = sin^-1 56/65`
सिद्ध कीजिए:
`cot^-1((sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))) = x/2, x ∈ (0, pi/4)`
sin(tan-1x), |x| < 1 बराबर होता है:
सिद्ध कीजिए:
`tan^-1((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2cos^-1x, -1/sqrt2 ≤ x ≤ 1`
[संकेत: x = cos 2θ रखिए]
निम्नलिखित समीकरण को सरल कीजिए:
`2tan^-1(cosx) = tan^-1(2cosecx)`
निम्नलिखित समीकरण को सरल कीजिए:
`tan^-1 (1 - x)/(1 + x) = 1/2 tan^-1x, (x > 0)`
`tan^-1(x/y) - tan^-1 (x - y)/(x + y)` का मान है: