Advertisements
Advertisements
प्रश्न
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/2)`
उत्तर
माना y `"cos"^-1 (-1/2)`
`Rightarrow "cos y" = -1/2 = -"cos" pi/3 = "cos" (pi - pi/3)`
`= cos^-1" तथा" [0,pi] ((2pi)/3) = 1/2`
फलन `"cos" ^-1 "x का मुख्य शाखा का परिसर" = [0, pi]` है।
अत: `"cos" ^-1 (-1/2) = (2pi)/3` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"sin"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cos"^-1 (sqrt3/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"sec"^-1 (2/sqrt3)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cot" ^-1 (sqrt3)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/sqrt2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (- sqrt2)`
निम्नलिखित के मान ज्ञात कीजिए:
`"tan"^-1 (1) + "cos"^-1 (-1/2) + "sin"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (1/2) + 2 "sin"^-1 (1/2)`
यदि `sin^-1 x = y,` तो
`"tan"^-1 sqrt 3 - "sec"^-1 (-2)` का मान बराबर है
निम्नलिखित के मान ज्ञात कीजिए:
`cos^-1(cos (13pi)/6)`
निम्नलिखित के मान ज्ञात कीजिए:
`tan^-1(tan (7pi)/6)`
सिद्ध कीजिए:
`sin^-1 8/17 + sin^-1 3/5 = tan^-1 77/36`
सिद्ध कीजिए:
`cos^-1 4/5 + cos^-1 12/13 = cos^-1 33/65`
सिद्ध कीजिए:
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
sin(tan-1x), |x| < 1 बराबर होता है:
सिद्ध कीजिए:
`tan^-1((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2cos^-1x, -1/sqrt2 ≤ x ≤ 1`
[संकेत: x = cos 2θ रखिए]
सिद्ध कीजिए:
`(9pi)/8 - 9/4 sin^-1 1/3 = 9/4 sin^-1 (2sqrt2)/3`
निम्नलिखित समीकरण को सरल कीजिए:
`tan^-1 (1 - x)/(1 + x) = 1/2 tan^-1x, (x > 0)`
यदि `sin^-1(1 - x) - 2sin^-1x = pi/2`, तो x का मान बराबर है:
`tan^-1(x/y) - tan^-1 (x - y)/(x + y)` का मान है: