Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए:
`cos^-1 12/13 + sin^-1 3/5 = sin^-1 56/65`
उत्तर
x = `cos^-1 "और" y = sin^-1(3/5)`
cos x` =12/13 "और" sin y = 3/5`
`sin x = sqrt (1 - cos^2 x) "और" cos y = sqrt(1 - sin^2 y)`
अब, `sin x = sqrt(1 - 144/169)` और`cosy = sqrt( 1 - 9/25)`
= `sin x = 5/13 "और" cos y = 4/5`
हम यह जानते हैं,
sin (x + y) = sin x cos y + cos x sin y
= `5/13 xx 4/5 + 12/13 xx 3/5 `
= `20/65 + 36/65 `
= `56/65`
= `x + y = sin ^-1(56/65)`
या, `cos^-1(12/13) + sin^-1 (3/5)`
= `sin^-1(56/65)`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"sin"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cos"^-1 (sqrt3/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"tan" ^-1 (-1)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/sqrt2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (1/2) + 2 "sin"^-1 (1/2)`
`"tan"^-1 sqrt 3 - "sec"^-1 (-2)` का मान बराबर है
निम्नलिखित के मान ज्ञात कीजिए:
`cos^-1(cos (13pi)/6)`
निम्नलिखित के मान ज्ञात कीजिए:
`tan^-1(tan (7pi)/6)`
सिद्ध कीजिए:
`2sin^-1 3/5 = tan^-1 24/7`
सिद्ध कीजिए:
`sin^-1 8/17 + sin^-1 3/5 = tan^-1 77/36`
सिद्ध कीजिए:
`cos^-1 4/5 + cos^-1 12/13 = cos^-1 33/65`
सिद्ध कीजिए:
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
सिद्ध कीजिए:
`tan^-1 1/5 + tan^-1 1/7 + tan^-1 1/3 + tan^-1 1/8 = pi/4`
सिद्ध कीजिए:
`tan^-1 sqrtx = 1/2 cos^-1((1 - x)/(1 + x))`, x ∈ [0, 1]
sin(tan-1x), |x| < 1 बराबर होता है:
सिद्ध कीजिए:
`tan^-1((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2cos^-1x, -1/sqrt2 ≤ x ≤ 1`
[संकेत: x = cos 2θ रखिए]
सिद्ध कीजिए:
`(9pi)/8 - 9/4 sin^-1 1/3 = 9/4 sin^-1 (2sqrt2)/3`
निम्नलिखित समीकरण को सरल कीजिए:
`tan^-1 (1 - x)/(1 + x) = 1/2 tan^-1x, (x > 0)`
`tan^-1(x/y) - tan^-1 (x - y)/(x + y)` का मान है: