Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए:
`tan^-1 sqrtx = 1/2 cos^-1((1 - x)/(1 + x))`, x ∈ [0, 1]
उत्तर १
`tan^-1 sqrtx = 1/2 xx 2tan^-1 sqrtx`
= `1/2 cos^-1 (1 + (sqrtx)^2)/(1 - (sqrtx)^2) ... [2tan^-1 = cos^-1 (1 + x^2)/(1 - x^2)]`
= `1/2cos^-1 ((1 - x)/(1 + x))`
उत्तर २
x = `tan^2 theta` Then `sqrtx= tan theta`
=> `theta = tan^(-1) sqrtx`
`:. (1-x)/(1+x) `
=` (1-tan^2 theta)/(1+tan^2 theta) `
= `cos 2 theta`
अब हमारे पास है,
= `1/2 cos^(-1) ((1-x)/(1+x)) `
`= 1/2 cos^(-1)(cos 2 theta) `
`= 1/2 xx 2theta `
=> ` theta = tan^(-1) sqrtx`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cos"^-1 (sqrt3/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"tan"^-1 (-sqrt3)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"tan" ^-1 (-1)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (- sqrt2)`
निम्नलिखित के मान ज्ञात कीजिए:
`"tan"^-1 (1) + "cos"^-1 (-1/2) + "sin"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (1/2) + 2 "sin"^-1 (1/2)`
`"tan"^-1 sqrt 3 - "sec"^-1 (-2)` का मान बराबर है
निम्नलिखित के मान ज्ञात कीजिए:
`cos^-1(cos (13pi)/6)`
सिद्ध कीजिए:
`2sin^-1 3/5 = tan^-1 24/7`
सिद्ध कीजिए:
`sin^-1 8/17 + sin^-1 3/5 = tan^-1 77/36`
सिद्ध कीजिए:
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
सिद्ध कीजिए:
`tan^-1 1/5 + tan^-1 1/7 + tan^-1 1/3 + tan^-1 1/8 = pi/4`
सिद्ध कीजिए:
`cot^-1((sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))) = x/2, x ∈ (0, pi/4)`
sin(tan-1x), |x| < 1 बराबर होता है:
सिद्ध कीजिए:
`(9pi)/8 - 9/4 sin^-1 1/3 = 9/4 sin^-1 (2sqrt2)/3`
निम्नलिखित समीकरण को सरल कीजिए:
`2tan^-1(cosx) = tan^-1(2cosecx)`
निम्नलिखित समीकरण को सरल कीजिए:
`tan^-1 (1 - x)/(1 + x) = 1/2 tan^-1x, (x > 0)`
यदि `sin^-1(1 - x) - 2sin^-1x = pi/2`, तो x का मान बराबर है:
`tan^-1(x/y) - tan^-1 (x - y)/(x + y)` का मान है: