मराठी

P is a Point on the Bisector of an Angle ∠Abc. If the Line Through P Parallel to Ab Meets Bc at Q, Prove that Triangle Bpq is Isosceles. - Mathematics

Advertisements
Advertisements

प्रश्न

P is a point on the bisector of an angle ∠ABC. If the line through P parallel to AB meets BC at Q, prove that triangle BPQ is isosceles.  

 

उत्तर

Given that P is a point on the bisector of an angle ABC, and PQ|| AB.
We have to prove that ΔBPQis isosceles 
Since,  

BP is bisector of ∠ABC⇒∠ABP=∠PBC         ............(1) 

Now, 

PQllAB 

⇒ ∠BPQ=∠ABP                  ................(2) 

[alternative angles] 

From (1) and (2), we get 

∠BPQ=∠PBC(or)∠BPQ=∠PBQ 

Now, 
In , ΔBPQ 

∠BPQ=∠PBQ 

⇒ΔBPQ  is an isosceles triangle.
∴Hence proved 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Congruent Triangles - Exercise 12.3 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 12 Congruent Triangles
Exercise 12.3 | Q 9 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×