मराठी

The Diagonals of a Cyclic Quadrilateral Are at Right Angles. Prove that the Perpendicular from the Point of Their Intersection on Any Side When Produced Backward Bisects the Opposite Side. - Mathematics

Advertisements
Advertisements

प्रश्न

The diagonals of a cyclic quadrilateral are at right angles. Prove that the perpendicular from the point of their intersection on any side when produced backward bisects the opposite side.

बेरीज

उत्तर

Let ABCD be a cyclic quadrilateral such that its diagonals AC and BD intersect in P at right angles.
Let PL ⊥ AB such that LP produced to meet CD in M. We have to prove that M bisects CD. i.e.,

Consider arc AD, Clearly, it makes angles ∠ 1 and ∠2 in the same segment.
∠ 1 = ∠ 2                              ...(i)

In the right-angled triangle PLB, we have
∠ 2  + ∠ 3 + ∠ PLB = 180°
⇒  ∠ 2  + ∠ 3 + 90° = 180°
⇒  ∠ 2  + ∠ 3 = 90°          ....(ii)

Since, LPM is a straight line.
∴ ∠ 3 + ∠ BPD + ∠ 4 = 180°
⇒  ∠ 3 + 90° + ∠ 4 = 180°
⇒  ∠ 3 + ∠ 4 = 90°         ...(iii)

From (ii) and (iii), we get
∠ 2  + ∠ 3 = ∠ 3 + ∠ 4 
∠ 2  = ∠ 3                   ...(iv)

From (i) and (iv), we get
∠ 1 = ∠ 4
PM = CM
Similarly,
PM = DM
Hence, CM = MD
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 1

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 15 Circles
Exercise 1 | Q 19

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×