मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Walls of two buildings on either side of a street are parallel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of 4 m. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Walls of two buildings on either side of a street are parallel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of 4 m. On turning the ladder over to the other side of the street, its top touches the window of the other building at a height 4.2 m. Find the width of the street.

बेरीज

उत्तर

Let the length of the ladder be 5.8 m.

According to Pythagoras theorem,

In ΔEAB,

EA2 + AB2 = EB2

∴ (4.2)2 + AB2 = (5.8)2

∴ 17.64 + AB2 = 33.64

∴ AB2 = 33.64 − 17.64

∴ AB2 = 16

∴ AB = 4 m

In ∆DCB,

DC2 + CB2 = DB2

∴ (4)2 + CB2 = (5.8)2

∴ 16 + CB2 = 33.64

∴ CB2 = 33.64 − 16

∴ CB2 = 17.64

∴ CB = 4.2 m

From (1) and (2), we get

AB + BC = 4 + 4.2 = 8.2 m

∴ the width of the street is 8.2 m.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Pythagoras Theorem - Practice Set 2.1 [पृष्ठ ३९]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
पाठ 2 Pythagoras Theorem
Practice Set 2.1 | Q 10 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Side of a triangle is given, determine it is a right triangle.

`(2a – 1) cm, 2\sqrt { 2a } cm, and (2a + 1) cm`


In a right triangle ABC right-angled at C, P and Q are the points on the sides CA and CB respectively, which divide these sides in the ratio 2 : 1. Prove that

`(i) 9 AQ^2 = 9 AC^2 + 4 BC^2`

`(ii) 9 BP^2 = 9 BC^2 + 4 AC^2`

`(iii) 9 (AQ^2 + BP^2 ) = 13 AB^2`


Tick the correct answer and justify: In ΔABC, AB = `6sqrt3` cm, AC = 12 cm and BC = 6 cm.

The angle B is:


In the given figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that:

`"AC"^2 = "AD"^2 + "BC"."DM" + (("BC")/2)^2`


Identify, with reason, if the following is a Pythagorean triplet.
(4, 9, 12)


For finding AB and BC with the help of information given in the figure, complete following activity.

AB = BC ..........

∴ ∠BAC =

∴ AB = BC = × AC

                 = × `sqrt8`

                 = × `2sqrt2`

                 =


In the given figure, ∠DFE = 90°, FG ⊥ ED, If GD = 8, FG = 12, find (1) EG (2) FD and (3) EF


In a trapezium ABCD, seg AB || seg DC seg BD ⊥ seg AD, seg AC ⊥ seg BC, If AD = 15, BC = 15 and AB = 25. Find A(▢ABCD)


If P and Q are the points on side CA and CB respectively of ΔABC, right angled at C, prove that (AQ2 + BP2 ) = (AB2 + PQ2)


Prove that `(sin θ + cosec θ)^2 + (cos θ + sec θ)^2 = 7 + tan^2 θ + cot^2 θ`.


In the figure below, find the value of 'x'.


From the given figure, find the length of hypotenuse AC and the perimeter of ∆ABC.


Find the length of the hypotenuse of a triangle whose other two sides are 24cm and 7cm.


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 + AC2 = 2AD2 + `(1)/(2)"BC"^2`


The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ2 = 2PR2 + QR2 


If in a ΔPQR, PR2 = PQ2 + QR2, then the right angle of ∆PQR is at the vertex ________


If ΔABC ~ ΔPQR, `("ar" triangle "ABC")/("ar" triangle "PQR") = 9/4` and AB = 18 cm, then the length of PQ is ______.


In a quadrilateral ABCD, ∠A + ∠D = 90°. Prove that AC2 + BD2 = AD2 + BC2 

[Hint: Produce AB and DC to meet at E.]


A right-angled triangle may have all sides equal.


Two poles of 10 m and 15 m stand upright on a plane ground. If the distance between the tops is 13 m, find the distance between their feet.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×