English

A Merchant Plans to Sell Two Types of Personal Computers a Desktop Model and a Portable Model that Will Cost Rs 25,000 and Rs 40,000 Respectively . - Mathematics

Advertisements
Advertisements

Question

A merchant plans to sell two types of personal computers a desktop model and a portable model that will cost Rs 25,000 and Rs 40,000 respectively. He estimates that the total monthly demand of computers will not exceed 250 units. Determine the number of units of each type of computers which the merchant should stock to get maximum profit if he does not want to invest more than Rs 70 lakhs and his profit on the desktop model is Rs 4500 and on the portable model is Rs 5000. 

Sum

Solution

Let x and be the number of desktop model and portable model respectively.
Number of desktop model and portable model cannot be negative.

Therefore, x ≥ 0 , y ≥ 0

It is given that the monthly demand will not exist 250 units.

∴  \[x + y \leq 250\]

Cost of desktop and portable model is Rs 25,000 and Rs 40,000 respectively. Therefore, cost of x desktop model and y portable model  is Rs 25,000 and Rs 40,000 respectively and he does not want to invest more than Rs 70 lakhs.

\[25000x + 40000y \leq 7000000\]

Profit on the desktop model is Rs 4500 and on the portable model is Rs 5000. Therefore, profit made by x desktop model and y portable model is Rs 4500x and Rs 5000y respectively.

Total profit = Z = 4500x + 5000y

The mathematical form of the given LPP is:

Maximize Z = 4500x + 5000y

Subject to constraints: \[x + y \leq 250\]

\[25000x + 40000y \leq 7000000\]

x ≥ 0 , y ≥ 0

First we will convert inequations into equations as follows:
x + y = 250, 25000x + 40000y = 7000000, x = 0 and y = 0

Region represented by x + y ≤ 250:
The line x + y = 250 meets the coordinate axes at A(250, 0) and \[B\left( 0, 250 \right)\]  respectively. By joining these points we obtain the line x + y = 250. Clearly (0,0) satisfies the x + y = 250. So, the region which contains the origin represents the solution set of the inequation x + y ≤ 250.

Region represented by 25000x + 40000y ≤ 7000000:
The line 25000x + 40000y = 7000000 meets the coordinate axes at C(280, 0) and \[D\left( 0, 175 \right)\]  respectively. By joining these points we obtain the line 25000x + 40000y = 7000000. Clearly (0,0) satisfies the inequation 25000x + 40000y ≤ 7000000. So,the region which contains the origin represents the solution set of the inequation 25000x + 40000y ≤ 7000000.

Region represented by ≥ 0 and y ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations x ≥ 0, and y ≥ 0.
The feasible region determined by the system of constraints x + y ≤ 250, 25000x + 40000y ≤ 7000000, x ≥ 0 and y ≥ 0 are as follows.

The corner points are O(0, 0), D(0, 175), E(200, 50) and A(250, 0).

The values of the objective function Z at corner points of the feasible region are given in the following table:

Corner Points

Z = 4500x + 5000y

 
O(0, 0) 0  

D(0, 175)

875000

 

E(200, 50)

1150000

← Maximum

A(250, 0)

1125000

 

Clearly, Z is maximum at x = 200 and = 50 and the maximum value of Z at this point is 1150000.

Thus, 200 desktop models and 50 portable units should be sold to maximize the profit.

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Linear programming - Exercise 30.4 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 30 Linear programming
Exercise 30.4 | Q 45 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the following LPP by using graphical method.

Maximize : Z = 6x + 4y

Subject to x ≤ 2, x + y ≤  3, -2x + y ≤  1, x ≥  0, y ≥ 0.

Also find maximum value of Z.


A dealer in rural area wishes to purchase a number of sewing machines. He has only Rs 5,760 to invest and has space for at most 20 items for storage. An electronic sewing machine cost him Rs 360 and a manually operated sewing machine Rs 240. He can sell an electronic sewing machine at a profit of Rs 22 and a manually operated sewing machine at a profit of Rs 18. Assuming that he can sell all the items that he can buy, how should he invest his money in order to maximize his profit? Make it as a LPP and solve it graphically.


Minimize Z = 18x + 10y
Subject to 

\[4x + y \geq 20\]
\[2x + 3y \geq 30\]
\[ x, y \geq 0\]


Maximize Z = 4x + 3y
subject to

\[3x + 4y \leq 24\]
\[8x + 6y \leq 48\]
\[ x \leq 5\]
\[ y \leq 6\]
\[ x, y \geq 0\]


Maximize Z = 7x + 10y
Subject to 

\[x + y \leq 30000\]
\[ y \leq 12000\]
\[ x \geq 6000\]
\[ x \geq y\]
\[ x, y \geq 0\]

 


Minimize Z = 5x + 3y
Subject to 

\[2x + y \geq 10\]
\[x + 3y \geq 15\]
\[ x \leq 10\]
\[ y \leq 8\]
\[ x, y \geq 0\]

 


Minimize Z = 30x + 20y
Subject to 

\[x + y \leq 8\]
\[ x + 4y \geq 12\]
\[5x + 8y = 20\]
\[ x, y \geq 0\]


Show the solution zone of the following inequalities on a graph paper:

\[5x + y \geq 10\]

\[ x + y \geq 6\]

\[x + 4y \geq 12\]

\[x \geq 0, y \geq 0\]

Find x and y for which 3x + 2y is minimum subject to these inequalities. Use a graphical method.


A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 of calories. Two foods A and B, are available at a cost of Rs 4 and Rs 3 per unit respectively. If one unit of A contains 200 units of vitamin, 1 unit of mineral and 40 calories and one unit of food B contains 100 units of vitamin, 2 units of minerals and 40 calories, find what combination of foods should be used to have the least cost?


A dietician mixes together two kinds of food in such a way that the mixture contains at least 6 units of vitamin A, 7 units of vitamin B, 11 units of vitamin and 9 units of vitamin D. The vitamin contents of 1 kg of food X and 1 kg of food Y are given below:

  Vitamin
A
Vitamin
B

Vitamin
C

Vitamin
D
Food X
Food Y
1
2
1
1
1
3
2
1

One kg food X costs Rs 5, whereas one kg of food Y costs Rs 8. Find the least cost of the mixture which will produce the desired diet.


A diet is to contain at least 80 units of vitamin A and 100 units of minerals. Two foods F1and F2 are available. Food F1 costs Rs 4 per unit and F2 costs Rs 6 per unit one unit of food F1 contains 3 units of vitamin A and 4 units of minerals. One unit of food F2contains 6 units of vitamin A and 3 units of minerals. Formulate this as a linear programming problem and find graphically the minimum cost for diet that consists of mixture of these foods and also meets the mineral nutritional requirements


A wholesale dealer deals in two kinds, A and B (say) of mixture of nuts. Each kg of mixture A contains 60 grams of almonds, 30 grams of  cashew nuts and 30 grams of hazel nuts. Each kg of mixture B contains 30 grams of almonds, 60 grams of cashew nuts and 180 grams of hazel nuts. The remainder of both mixtures is per nuts. The dealer is contemplating to use mixtures A and B to make a bag which will contain at least 240 grams of almonds, 300 grams of cashew nuts and 540 grams of hazel nuts. Mixture A costs Rs 8 per kg. and mixture B costs Rs 12 per kg. Assuming that mixtures A and B are uniform, use graphical method to determine the number of kg. of each mixture which he should use to minimise the cost of the bag.


Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contains at least 8 units of vitamin A and 11 units of vitamin B. Food P costs ₹60/kg and food Q costs ₹80/kg. Food P contains 3 units/kg of vitamin A and 5 units/kg of vitamin B while food Q contains 4 units/kg of vitamin A and 2 units/kg of vitamin B. Determine the minimum cost of the mixture.


One kind of cake requires 200 g of flour and 25 g of fat, and another kind of cake requires 100 g of flour and 50 g of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no storage of the other ingredients used in making the cakes.


A farmer mixes two brands P and Q of cattle feed. Brand P, costing ₹250 per bag, contains 2 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing ₹200 per bag contains 1.5 units of nutritional element A, 11.25 units of element B and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?


A firm manufactures headache pills in two sizes A and B. Size A contains 2 grains of aspirin, 5 grains of bicarbonate and 1 grain of codeine; size B contains 1 grain of aspirin, 8 grains of bicarbonate and 66 grains of codeine. It has been found by users that it requires at least 12 grains of aspirin, 7.4 grains of bicarbonate and 24 grains of codeine for providing immediate effects. Determine graphically the least number of pills a patient should have to get immediate relief. Determine also the quantity of codeine consumed by patient.


A company manufactures two types of novelty Souvenirs made of plywood. Souvenirs of type A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours 20 minutes available for cutting and 4 hours available for assembling. The profit is 50 paise each for type A and 60 paise each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize the profit?


A manufacturer produces two types of steel trunks. He has two machines A and B. For completing, the first types of the trunk requires 3 hours on machine A and 3 hours on machine B, whereas the second type of the trunk requires 3 hours on machine A and 2 hours on machine B. Machines A and B can work at most for 18 hours and 15 hours per day respectively. He earns a profit of Rs 30 and Rs 25 per trunk of the first type and the second type respectively. How many trunks of each type must he make each day to make maximum profit?


A producer has 30 and 17 units of labour and capital respectively which he can use to produce two type of goods x and y. To produce one unit of x, 2 units of labour and 3 units of capital are required. Similarly, 3 units of labour and 1 unit of capital is required to produce one unit of y. If x and y are priced at Rs 100 and Rs 120 per unit respectively, how should be producer use his resources to maximize the total revenue? Solve the problem graphically.


An oil company has two depots, A and B, with capacities of 7000 litres and 4000 litres respectively. The company is to supply oil to three petrol pumps, DEF whose requirements are 4500, 3000 and 3500 litres respectively. The distance (in km) between the depots and petrol pumps is given in the following table:
Figure
Assuming that the transportation cost per km is Rs 1.00 per litre, how should the delivery be scheduled in order that the transportation cost is minimum?


A library has to accommodate two different types of books on a shelf. The books are 6 cm and 4 cm thick and weigh 1 kg and  \[1\frac{1}{2}\] kg each respectively. The shelf is 96 cm long and atmost can support a weight of 21 kg. How should the shelf be filled with the books of two types in order to include the greatest number of books? Make it as an LPP and solve it graphically.

 


A merchant plans to sell two types of personal computers a desktop model and a portable model that will cost Rs 25,000 and Rs 40,000 respectively. He estimates that the total monthly demand of computers will not exceed 250 units. Determine the number of units of each type of computers which the merchant should stock to get maximum profit if he does not want to invest more than Rs 70 lakhs and his profit on the desktop model is Rs 4500 and on the portable model is Rs 5000. Make an LPP and solve it graphically.


A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:
 

Types of Toys Machines
  I II III
A 12 18 6
B 6 0 9
 
Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is ₹7.50 and that on each toy of type B is ₹5, show that 15 toys of type A and 30 toys of type B should be manufactured in a day to get maximum profit.

A medical company has factories at two places, A and B. From these places, supply is made to each of its three agencies situated at PQ and R. The monthly requirements of the agencies are respectively 40, 40 and 50 packets of the medicines, while the production capacity of the factories, A and B, are 60 and 70 packets respectively. The transportation cost per packet from the factories to the agencies are given below:

Transportation Cost per packet(in Rs.)
From-> A B
To 
P 5 4
Q 4 2
R 3 5
 How many packets from each factory be transported to each agency so that the cost of transportation is minimum? Also find the minimum cost?

The graph of the inequality 3X − 4Y ≤ 12, X ≤ 1, X ≥ 0, Y ≥ 0 lies in fully in


Draw the graph of inequalities x ≤ 6, y −2 ≤ 0, x ≥ 0, y ≥ 0 and indicate the feasible region


The minimum value of z = 10x + 25y subject to 0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≥ 5 is ______.


Let R be the feasible region for a linear programming problem, and let Z = ax + by be the objective function. If R is bounded, then the objective function Z has both a maximum and a minimum value on R and ____________.


The feasible region (shaded) for a L.P.P is shown in the figure. The maximum Z = 5x + 7y is ____________.


A manufacturer wishes to produce two commodities A and B. The number of units of material, labour and equipment needed to produce one unit of each commodity is shown in the table given below. Also shown is the available number of units of each item, material, labour, and equipment.

Items Commodity A Commodity B Available no. of Units
Material 1 2 8
Labour 3 2 12
Equipment 1 1 10

Find the maximum profit if each unit of commodity A earns a profit of ₹ 2 and each unit of B earns a profit of ₹ 3.


The comer point of the feasible region determined by the following system of linear inequalities:

2x + y ≤ 10, x + 3y ≤ 15, x, y ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let x = Px + qx where P, q > 0 condition on P and Q so that the maximum of z occurs at both (3, 4) and (0, 5) is


Solve the following Linear Programming Problem graphically:

Maximize: P = 70x + 40y

Subject to: 3x + 2y ≤ 9,

3x + y ≤ 9,

x ≥ 0,y ≥ 0.


Solve the following Linear Programming Problem graphically:

Minimize: Z = 60x + 80y

Subject to constraints:

3x + 4y ≥ 8

5x + 2y ≥ 11

x, y ≥ 0


The feasible region corresponding to the linear constraints of a Linear Programming Problem is given below.


Which of the following is not a constraint to the given Linear Programming Problem?


Minimize z = x + 2y,

Subject to x + 2y ≥ 50, 2x – y ≤ 0, 2x + y ≤ 100, x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problem graphically.

Maximise Z = 5x + 2y subject to:

x – 2y ≤ 2,

3x + 2y ≤ 12,

– 3x + 2y ≤ 3,

x ≥ 0, y ≥ 0


Draw the rough graph and shade the feasible region for the inequalities x + y ≥ 2, 2x + y ≤ 8, x ≥ 0, y ≥ 0.


A linear programming problem is given by Z = px + qy where p, q > 0 subject to the constraints: x + y ≤ 60, 5x + y ≤ 100, x ≥ 0 and y ≥ 0

  1. Solve graphically to find the corner points of the feasible region.
  2. If Z = px + qy is maximum at (0, 60) and (10, 50), find the relation of p and q. Also mention the number of optimal solution(s) in this case.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×