English
Karnataka Board PUCPUC Science Class 11

A Simple Pendulum of Length L Is Pulled Aside to Make an Angle θ with the Vertical. Find the Magnitude of the Torque of the Weight ω of the Bob About the Point of Suspension. When is the Torque Zero? - Physics

Advertisements
Advertisements

Question

A simple pendulum of length l is pulled aside to make an angle θ with the vertical. Find the magnitude of the torque of the weight ω of the bob about the point of suspension. When is the torque zero?

Sum

Solution

Distance between the line of force and point of suspension, `r = l sinθ`

\[\text{Torque, }\overrightarrow{\tau}  =  \overrightarrow{F}  \times  \overrightarrow{r} \] 

\[ \Rightarrow \tau = wr \sin\theta = wl\sin\theta\]

Here, w is the weight of the bob.

The torque will be zero when the force acting on the body passes through the point of suspension, i.e., at the lowest point of suspension.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Rotational Mechanics - Exercise [Page 196]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 10 Rotational Mechanics
Exercise | Q 18 | Page 196

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Two particles, each of mass m and speed v, travel in opposite directions along parallel lines separated by a distance d. Show that the angular momentum vector of the two particle system is the same whatever be the point about which the angular momentum is taken.


Explain why friction is necessary to make the disc in Figure roll in the direction indicated

(a) Give the direction of frictional force at B, and the sense of frictional torque, before perfect rolling begins.

(b) What is the force of friction after perfect rolling begins?


The torque of the weight of any body about any vertical axis is zero. If it always correct?


A heavy particle of mass m falls freely near the earth's surface. What is the torque acting on this particle about a point 50 cm east to the line of motion? Does this torque produce any angular acceleration in the particle?


A body is in translational equilibrium under the action of coplanar forces. If the torque of these forces is zero about a point, is it necessary that it will also be zero about any other point?


Equal torques act on the disc A and B of the previous problem, initially both being at rest. At a later instant, the linear speeds of a point on the rim of A and another point on the rim of B are \[\nu_A\] and \[\nu_B\] respectively. We have


The density of a rod gradually decreases from one end to the other. It is pivoted at an end so that it can move about a vertical axis though the pivot. A horizontal force F is applied on the free end in a direction perpendicular to the rod. The quantities, that do not depend on which end of the rod is pivoted, are ________________ .


A particle of mass m is projected with a speed u at an angle θ with the horizontal. Find the torque of the weight of the particle about the point of projection when the particle is at the highest point.


When a force of 6⋅0 N is exerted at 30° to a wrench at a distance of 8 cm from the nut it is just able to loosen the nut. What force F would be sufficient to loosen it if it acts perpendicularly to the wrench at 16 cm from the nut?


Calculate the total torque acting on the body shown in the following figure about the point O.


A cubical block of mass m and edge a slides down a rough inclined plane of inclination θ with a uniform speed. Find the torque of the normal force acting on the block about its centre.


A 6⋅5 m long ladder rests against a vertical wall reaching a height of 6⋅0 m. A 60 kg man stands half way up the ladder.

  1. Find the torque of the force exerted by the man on the ladder about the upper end of the ladder.
  2. Assuming the weight of the ladder to be negligible as compared to the man and assuming the wall to be smooth, find the force exerted by the ground on the ladder.

The net external torque on a system of particles about an axis is zero. Which of the following are compatible with it?

  1. The forces may be acting radially from a point on the axis.
  2. The forces may be acting on the axis of rotation.
  3. The forces may be acting parallel to the axis of rotation.
  4. The torque caused by some forces may be equal and opposite to that caused by other forces.

A door is hinged at one end and is free to rotate about a vertical axis (Figure). Does its weight cause any torque about this axis? Give reason for your answer.


Two discs of moments of inertia I1 and I2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω2 and ω2 are brought into contact face to face with their axes of rotation coincident.

  1. Does the law of conservation of angular momentum apply to the situation? why?
  2. Find the angular speed of the two-disc system.
  3. Calculate the loss in kinetic energy of the system in the process.
  4. Account for this loss.

A spherical shell of 1 kg mass and radius R is rolling with angular speed ω on horizontal plane (as shown in figure). The magnitude of angular momentum of the shell about the origin O is `a/3 R^2` ω. The value of a will be:


A rod of mass 'm' hinged at one end is free to rotate in a horizontal plane. A small bullet of mass m/4 travelling with speed 'u' hits the rod and attaches to it at its centre. Find the angular speed of rotation of rod just after the bullet hits the rod 3. [take length of the rod as 'l']


A particle of mass 'm' is moving in time 't' on a trajectory given by

`vecr  = 10alphat^2hati + 5beta(t - 5)hatj`

Where α and β are dimensional constants.

The angular momentum of the particle becomes the same as it was for t = 0 at time t = ______ seconds.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×