English

∆Amt ~ ∆Ahe. in ∆Amt, Am = 6.3 Cm, ∠Tam = 50°, at = 5.6 Cm. a M a H = 7 5 . Construct ∆Ahe. - Geometry Mathematics 2

Advertisements
Advertisements

Questions

∆AMT ~ ∆AHE. In ∆AMT, AM = 6.3 cm, ∠TAM = 50°, AT = 5.6 cm. `"AM"/"AH" = 7/5`. Construct ∆AHE.

∆AMT ~ ∆AHE. In ∆AMT, AM = 6.3 cm, ∠TAM = 50°, AT = 5.6 cm. `"AM"/"AH" = 7/5`. then construct △AMT and ΔAHE.

Sum

Solution

Analysis:

As shown in the figure,

Let A – H – M as well as points A – E – T be collinear.

∆AMT ~ ∆AHE,

∴ ∠TAM ≅ ∠EAH ...(Corresponding angles of similar triangles)

`"AM"/"AH" = "MT"/"HE" = "AT"/"AE"` ...(i)(Corresponding sides of similar triangles)

∴ `"AM"/"AH" = 7/5`     ...(ii)(Given)

`"AM"/"AH" = "MT"/"HE" = "AT"/"AE" = 7/5`    ...[From (i) and (ii)]

∴ sides of ∆AHE are smaller than sides of ∆AMT.

∴ If seg AH will be equal to 5 parts out of 7 equal parts of side AM.

So, if we construct ∆AMT, point H will be on side AM, at a distance equal to 5 parts from A.

Now, point E is the point of intersection of ray AT and a line through H, parallel to MT.

∆AHE is the required triangle similar to ∆AMT.

Steps of Construction:

  1. Draw ∆AMT such that AM = 6.3 cm, ∠TAM = 50°, AT = 5.6 cm.
  2. Draw ray AB making an acute angle with side AM.
  3. Taking convenient distance on the compass, mark 7 points A1, A2, A3, A4, A5, A6 and A7, such that AA1 = A1A2 = A2A3 = A3A4 = A4A5 = A5A6 = A6A7.
  4. Join A7M. Draw line parallel to A7M through A5 to intersects seg AM at H.
  5. Draw a line parallel to side TM through H. Name the point of intersection of this line and seg AT as E.
    ∆AHE is the required triangle similar to ∆AMT.

Here, ∆AMT ~ ∆AHE.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Geometric Constructions - Q.4

RELATED QUESTIONS

ΔRST ~ ΔUAY, In ΔRST, RS = 6 cm, ∠S = 50°, ST = 7.5 cm. The corresponding sides of ΔRST and ΔUAY are in the ratio 5 : 4. Construct ΔUAY.


 

Construct a triangle ABC in which BC = 6 cm, AB = 5 cm and ∠ABC = 60°. Then construct another triangle whose sides are`3/4` times the corresponding sides of ΔABC.

 

Draw a triangle ABC with BC = 7 cm, ∠B = 45° and ∠A = 105°. Then construct a triangle whose sides are`4/5` times the corresponding sides of ΔABC.


Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts. Give the justification of the construction.


Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5


Construct an isosceles triangle with base 8 cm and altitude 4 cm. Construct another triangle whose sides are `2/3` times the corresponding sides of the isosceles triangle.


Draw a right triangle in which the sides (other than the hypotenuse) are of lengths 4 cm and 3 cm. Now construct another triangle whose sides are `3/5` times the corresponding sides of the given triangle.


Construct a triangle similar to a given ΔABC such that each of its sides is (2/3)rd of the corresponding sides of ΔABC. It is given that BC = 6 cm, ∠B = 50° and ∠C = 60°.


Draw a ΔABC in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to ΔABC with its sides equal to (3/4)th of the corresponding sides of ΔABC.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Construct a triangle similar to a given ΔXYZ with its sides equal to (3/4)th of the corresponding sides of ΔXYZ. Write the steps of construction.


Construct the circumcircle and incircle of an equilateral ∆XYZ with side 6.5 cm and centre O. Find the ratio of the radii of incircle and circumcircle.


Construct a right triangle in which the sides, (other than the hypotenuse) are of length 6 cm and 8 cm. Then construct another triangle, whose sides are `3/5` times the corresponding sides of the given triangle.


∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, \[\frac{AC}{LN} = \frac{4}{7}\]. Construct ∆ABC and ∆LBN.


Construct ∆PYQ such that, PY = 6.3 cm, YQ = 7.2 cm, PQ = 5.8 cm. If \[\frac{YZ}{YQ} = \frac{6}{5},\] then construct ∆XYZ similar to ∆PYQ.


Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that `(AP)/(AB)=3/5`.

 

 

Δ AMT ∼ ΔAHE. In  Δ AMT, MA = 6.3 cm, ∠MAT = 120°, AT = 4.9 cm, `(MA)/(HA) = 7/5`. construct  Δ AHE. 


Points P and Q trisect the line segment joining the points A(−2, 0) and B(0, 8) such that P is near to A. Find the coordinates of points P and Q.


Choose the correct alternative:

______ number of tangents can be drawn to a circle from the point on the circle.


Choose the correct alternative:

ΔPQR ~ ΔABC, `"PR"/"AC" = 5/7`, then


If the point P (6, 7) divides the segment joining A(8, 9) and B(1, 2) in some ratio, find that ratio

Solution:

Point P divides segment AB in the ratio m: n.

A(8, 9) = (x1, y1), B(1, 2 ) = (x2, y2) and P(6, 7) = (x, y)

Using Section formula of internal division,

∴ 7 = `("m"(square) - "n"(9))/("m" + "n")`

∴ 7m + 7n = `square` + 9n

∴ 7m – `square` = 9n – `square`

∴ `square` = 2n

∴ `"m"/"n" = square`


To divide a line segment AB in the ratio 5 : 6, draw a ray AX such that ∠BAX is an acute angle, then draw a ray BY parallel to AX and the points A1, A2, A3, ... and B1, B2, B3, ... are located at equal distances on ray AX and BY, respectively. Then the points joined are ______.


By geometrical construction, it is possible to divide a line segment in the ratio ______.


To divide a line segment PQ in the ratio 5 : 7, first a ray PX is drawn so that ∠QPX is an acute angle and then at equal distances points are marked on the ray PX such that the minimum number of these points is ______.


The ratio of corresponding sides for the pair of triangles whose construction is given as follows: Triangle ABC of dimensions AB = 4cm, BC = 5 cm and ∠B= 60°.A ray BX is drawn from B making an acute angle with AB.5 points B1, B2, B3, B4 and B5 are located on the ray such that BB1 = B1B2 = B2B3 = B3B4 = B4B5.

B4 is joined to A and a line parallel to B4A is drawn through B5 to intersect the extended line AB at A’.

Another line is drawn through A’ parallel to AC, intersecting the extended line BC at C’. Find the ratio of the corresponding sides of ΔABC and ΔA′BC′.


If the perpendicular distance between AP is given, which vertices of the similar triangle would you find first?


If you need to construct a triangle with point P as one of its vertices, which is the angle that you need to construct a side of the triangle?


The image of construction of A’C’B a similar triangle of ΔACB is given below. Then choose the correct option.


What is the ratio `(AC)/(BC)` for the following construction: A line segment AB is drawn. A single ray is extended from A and 12 arcs of equal lengths are cut, cutting the ray at A1, A2… A12.A line is drawn from A12 to B and a line parallel to A12B is drawn, passing through the point A6 and cutting AB at C.


To construct a triangle similar to a given ∆ABC with its sides `7/3` of the corresponding sides of ∆ABC, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC. The points B1, B2, ...., B7 are located at equal distances on BX, B3 is joined to C and then a line segment B6C' is drawn parallel to B3C where C' lies on BC produced. Finally, line segment A'C' is drawn parallel to AC.


Draw a triangle ABC in which BC = 6 cm, CA = 5 cm and AB = 4 cm. Construct a triangle similar to it and of scale factor `5/3`.


Draw a parallelogram ABCD in which BC = 5 cm, AB = 3 cm and ∠ABC = 60°, divide it into triangles BCD and ABD by the diagonal BD. Construct the triangle BD' C' similar to ∆BDC with scale factor `4/3`. Draw the line segment D'A' parallel to DA where A' lies on extended side BA. Is A'BC'D' a parallelogram?


Draw a line segment of length 7 cm and divide it in the ratio 5 : 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×