Advertisements
Advertisements
Question
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin65° + cot59°
Solution
sin65° + cot59°
= sin(90° - 25°) + cot(90° - 31°)
= cos25° + tan31°.
APPEARS IN
RELATED QUESTIONS
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
Calculate the value of A, if cos 3A. (2 sin 2A - 1) = 0
Find the value of 'A', if 2 cos A = 1
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
Find the value 'x', if:
Evaluate the following: `(sin62°)/(cos28°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin53° + sec66° - sin50°
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A