English
Karnataka Board PUCPUC Science 2nd PUC Class 12

From the rate expression for the following reaction, determine the order of reaction and the dimension of the rate constant. 3NOA(g)⟶NA2OA(g) Rate = k[NO]2 - Chemistry

Advertisements
Advertisements

Question

From the rate expression for the following reaction, determine the order of reaction and the dimension of the rate constant.

\[\ce{3NO_{(g)} -> N2O_{(g)}}\] Rate = k[NO]2

Numerical

Solution

Given rate = k[NO]2

Therefore, the order of the reaction = 2

Dimension of k = `"Rate"/["NO"]^2`

= `("mol L"^(-1)  "s"^(-1))/("mol L"^(-1))^2`

= `("mol L"^(-1)  "s"^(-1))/("mol"^2  "L"^(-2))`

= L mol−1 s−1

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Chemical Kinetics - Exercises [Page 117]

APPEARS IN

NCERT Chemistry [English] Class 12
Chapter 4 Chemical Kinetics
Exercises | Q 1.1 | Page 117

RELATED QUESTIONS

Define “zero order reaction”.


A reaction is second order in A and first order in B.

(i) Write the differential rate equation.

(ii) How is the rate affected on increasing the concentration of A three times?

(iii) How is the rate affected when the concentrations of both A and B are doubled?

 


For a reaction, \[\ce{A + B -> Product}\]; the rate law is given by, `r = k[A]^(1/2)[B]^2`. What is the order of the reaction?


From the rate expression for the following reaction, determine the order of reaction and the dimension of the rate constant.

\[\ce{C2H5Cl_{(g)} -> C2H4_{(g)} + HCl_{(g)}}\] Rate = k [C2H5Cl]


A reaction is first order in A and second order in B. How is the rate affected when the concentrations of both A and B are doubled?


How does calcination differ from roasting?


Molecularity of a reaction _____________.


Consider a first order gas phase decomposition reaction given below :
\[\ce{A(g) -> B(g) + C(g)}\]
The initial pressure of the system before decomposition of A was pi. After lapse of time ‘t’, total pressure of the system increased by x units and became ‘pt’ The rate constant k for the reaction is given as ______.


Why does the rate of any reaction generally decreases during the course of the reaction?


Use Molecular Orbital theory to determine the bond order in each of species, [He2j+ and [He2]2+?


The role of a catalyst is to change


For a reaction \[\ce{Cl2l(g) + 2No(g) -> 2NaCl(g)}\] the rate law is expressed as rate= K[Cl2] [No]2 what is the order of the reaction?


For a reaction 1/2 A ⇒ 2B, rate of disappearance of A is related 't o the appearance of B by the expression:


The number of molecules of the reactants taking part in a single step of the reaction is indicative of ______.


Read the following passage and answer the questions that follow:

The rate of reaction is concerned with decrease in the concentration of reactants or increase in the concentration of products per unit of time. It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time. A number of factors such as temperature, concentration of reactants, catalyst affect the rate of reaction. Mathematical representation of rate of a reaction is given by rate law:

Rate = k[A]x [B]y

x and y indicate how sensitive the rate is to change in concentration of A and B. Sum of x + y gives the overall order of a reaction.
When a sequence of elementary reactions gives us the products, the reaction is called complex reaction. Molecularity and order of an elementary reaction are same. Zero-order reactions are relatively uncommon but they occur under special conditions. All natural and artificial radioactive decay of unstable nuclei takes place by first-order kinetics.

  1. What is the effect of temperature on the rate constant of a reason?    [1]
  2. For a reaction \[\ce{A + B → Product}\], the rate law is given by, Rate = k[A]2 [B]1/2. What is the order of the reaction?    [1]
  3. How order and molecularity are different for complex reactions?    [1]
  4. A first-order reaction has a rate constant 2 × 10–3 s–1. How long will 6 g of this reactant take to reduce to 2 g?    [2]
    OR
    The half-life for radioactive decay of 14C is 6930 years. An archaeological artifact containing wood had only 75% of the 14C found in a living tree. Find the age of the sample.
    [log 4 = 0.6021, log 3 = 0.4771, log 2 = 0.3010, log 10 = 1]    [2]

On heating compound (A) gives a gas (B) which is constituent of air. The gas when treated with H2 in the presence of catalyst gives another gas (C) which is basic in nature, (A) should not be ______.


The following data was obtained for chemical reaction given below at 975 K.

\[\ce{2NO(g) + 2H2(g) -> N2(g) + 2H2O(g)}\]

  [NO] [H2] Rate
  Mol L-1 Mol L-1 Mol L-1 s-1
(1) 8 × 10-5 8 × 10-5 7 × 10-9
(2) 24 × 10-5 8 × 10-5 2.1 × 10-8
(3) 24 × 10-5 32 × 10-5 8.4 × 10-8

The order of the reaction with respect to NO is ______. (Integer answer)


A flask contains a mixture of compounds A and B. Both compounds decompose by first-order kinetics. The half-lives for A and B are 300 s and 180 s, respectively. If the concentrations of A and B are equal initially, the time required for the concentration of A to be four times that of B (in s) is ______. (Use ln 2 = 0.693)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×