Advertisements
Advertisements
Question
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
Solution
`A = [(0, -tan alpha/2), (tan alpha/2, 0)], I = [(1,0),(0,1)]`
`I + A = [(1,0),(0,1)] + [(0, -tan alpha/2), (tan alpha/2, 0)]`
`= [(1, -tan alpha/2), (tan alpha/2, 1)]`
`(I - A) [(cos alpha, -sin alpha),(sin alpha, cos alpha)] = ([(1,0),(0,1)] - [(0, -tan alpha/2), (tan alpha/2, 0)]) [(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
`= [(1, tan alpha/2), (-tan alpha/2, 1)] [(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
`= [(1, tan alpha/2), (-tan alpha/2, 1)]` `[((1 - tan^2 alpha/2)/(1 + tan^2 alpha/2)(-2 tan alpha/2)/(1+ tan^2 alpha/2)),((-2 tan alpha/2)/(1+ tan^2 alpha/2)(1 - tan^2 alpha/2)/(1 + tan^2 alpha/2))]`
`= [((1 + tan^2 alpha/2)/(1 + tan^2 alpha/2)(-tan alpha/2 - tan^3 alpha/2)/(1+ tan^2 alpha/2)),((tan alpha/2 + tan^3 alpha/2)/(1+ tan^2 alpha/2)(1 + tan^2 alpha/2)/(1 + tan^2 alpha/2))]`
`= [(1, -tan alpha/2),(tan alpha/2, 1)]`
Hence, `I + A = (I - A) [(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
APPEARS IN
RELATED QUESTIONS
If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix.
Let A = `[(0,1),(0,0)]`show that (aI+bA)n = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N
if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3
A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?
Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.
Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(5),(4),(-3)]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
Find k if the following matrix is singular:
`[(7, 3),(-2, "k")]`
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.
Answer the following question:
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices
Choose the correct alternative:
If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______
If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______
If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
If A is a square matrix, then A – A’ is a ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?
A matrix is said to be a column matrix if it has
A matrix is said to be a row matrix, if it has
If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
If the sides a, b, c of ΔABC satisfy the equation 4x3 – 24x2 + 47x – 30 = 0 and `|(a^2, (s - a)^2, (s - a)^2),((s - b)^2, b^2, (s - b)^2),((s - c)^2, (s - c)^2, c^2)| = p^2/q` where p and q are co-prime and s is semiperimeter of ΔABC, then the value of (p – q) is ______.
If A is a square matrix of order 3, then |2A| is equal to ______.
A matrix which is both symmetric and skew symmetric matrix is a ______.