English

In a ∆Abc, ∠A = 90°, Ab = 5 Cm and Ac = 12 Cm. If Ad ⊥ Bc, Then Ad = (A) 13 2 C M (B) 60 13 C M (C) 13 60 C M (D) 2 √ 15 13 C M - Mathematics

Advertisements
Advertisements

Question

In a ∆ABC, ∠A = 90°, AB = 5 cm and AC = 12 cm. If AD ⊥ BC, then AD =

Options

  • \[\frac{13}{2}cm\]
  • \[\frac{60}{13}cm\]
  • \[\frac{13}{60}cm\]
  • \[\frac{2\sqrt{15}}{13}cm\]
MCQ

Solution

Given: In ΔABC, `∠ A = 90^o` AD ⊥ BC, AC = 12cm, and AB = 5cm.

To find: AD

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

In ∆ACB and ∆ADC,

\[\angle C = \angle C\]        (Common)
\[\angle A = \angle ADC = 90^o\]
∴ ∆ACB ∼ ∆ADC     (AA Similarity)
`(AD)/(AB)=(AC)/(BC)`
`AD=(ABxxAC)/(BC)`
`AD=(12xx5)/13`
`AD= 60/13`

We got the result as `b`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Triangles - Exercise 7.10 [Page 136]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 7 Triangles
Exercise 7.10 | Q 42 | Page 136

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×