English

In Fig, Chord Ed is Parallel to the Diameter Ac of the Circle. Given ∠Cbe = 65°, Calculate ∠ Dec. - Mathematics

Advertisements
Advertisements

Question

In Fig, Chord ED is parallel to the diameter AC of the circle. Given ∠CBE = 65°, Calculate ∠ DEC.

Sum

Solution

Consider the arc CDE. We find that ∠ CBE and ∠ CAE are the angles in the same segment of arc CDE.
∴ ∠ CAE = ∠ CBE
⇒ ∠ CAE = 65°           ...( ∵ ∠ CBE = 65° )
Since AC is the diameter of the circle and the angle in a semicircle is a right angle.
Therefore, ∠ AEC = 90°.

Now, in Δ ACE, we have
∠ ACE + ∠ AEC + ∠ CAE = 180°
⇒ ∠ ACE + 90° + 65° = 180°
⇒ ∠ ACE = 25°

But ∠ DEC and ∠ ACE are alternate angles, because AC || DE.
∴ ∠ DEC = ∠ ACE = 25°.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Circles - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 15 Circles
Exercise 2 | Q 34

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In the given figure, ∠BAD = 65°, ∠ABD = 70°, ∠BDC = 45°

1) Prove that AC is a diameter of the circle.

2) Find ∠ACB


Calculate the area of the shaded region, if the diameter of the semicircle is equal to 14 cm. Take `pi = 22/7`


ABC is a right angles triangle with AB = 12 cm and AC = 13 cm. A circle, with centre O, has been inscribed inside the triangle.

Calculate the value of x, the radius of the inscribed circle.


In the given figure, RS is a diameter of the circle. NM is parallel to RS and ∠MRS = 29°. Calculate : ∠RNM


ABCD is a cyclic quadrilateral in which AB is parallel to DC and AB is a diameter of the circle. Given ∠BED = 65°; calculate :

  1. ∠DAB,
  2. ∠BDC.


In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°.

Calculate:

  1. ∠DAB,
  2. ∠DBA,
  3. ∠DBC,
  4. ∠ADC.

Also, show that the ΔAOD is an equilateral triangle.


Prove that the perimeter of a right triangle is equal to the sum of the diameter of its incircle and twice the diameter of its circumcircle.


In the given figure, AB is the diameter of a circle with centre O.

If chord AC = chord AD, prove that:

  1. arc BC = arc DB
  2. AB is bisector of ∠CAD.

Further, if the length of arc AC is twice the length of arc BC, find:

  1. ∠BAC
  2. ∠ABC


AB is a line segment and M is its mid-point. Three semi-circles are drawn with AM, MB and AB as diameters on the same side of the line AB. A circle with radius r unit is drawn so that it touches all the three semi-circles. Show that : AB = 6 × r

In the given figure, BAD = 65°, ABD = 70°, BDC = 45°.
(i) Prove that AC is a diameter of the circle.
(ii) Find ACB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×