English

In an Isosceles Triangle, If the Vertex Angle is Twice the Sum of the Base Angles, Calculate The Angles of the Triangle. - Mathematics

Advertisements
Advertisements

Question

In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle. 

Solution

Let ΔABC be isosceles such that AB = AC  

⇒∠B=∠C 

Given that vertex angle A is twice the sum of the base angles B and C. 

i.e., ∠A=2(∠B+∠C) 

⇒∠A=2(∠B+∠B)                    [∵∠B=∠C]

⇒∠A=2(2∠B)  

⇒∠A=4∠B  

Now,  

We know that sum of angles in a triangle 180°  

⇒ ∠A+ ∠B+ ∠C=180° 

4∠B+∠B+∠B=180°           [∵∠A=4∠B and ∠B=∠C]

6∠B=180°   

`∠B=(180°) /6=30° `            ∠B=30° 

Since, ∠B=∠C⇒ ∠B=∠C=30° 

And` ∠A=4∠B⇒ ∠A=4xx30°=120° ` 

∴Angles of the given triangle are 120°,30°,30°   

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Congruent Triangles - Exercise 12.3 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 12 Congruent Triangles
Exercise 12.3 | Q 3 | Page 47

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×