English

In Parallelogram Abcd, Ap and Aq Are Perpendiculars from the Vertex of Obtuse Angle a as Shown. If ∠X: ∠Y = 2: 1. Find Angles of the Parallelogram. - Mathematics

Advertisements
Advertisements

Question

In parallelogram ABCD, AP and AQ are perpendiculars from the vertex of obtuse angle A as shown.
If  ∠x: ∠y = 2: 1.

find angles of the parallelogram.

Sum

Solution

We know that AQCP is a quadrilateral. So sum of all angles must be 360.
∴ x + y + 90 + 90 = 360
x + y = 180
Given x : y = 2 : 1
So substitute x = 2y
3y = 180
y = 60
x = 120

We know that angle C = angle A = x = 120
Angle D = Angle B = 180 - x = 180 - 120 = 60
Hence, angles of a parallelogram are 120, 60, 120 and 60.

shaalaa.com
Types of Quadrilaterals
  Is there an error in this question or solution?
Chapter 14: Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium] - Exercise 14 (B) [Page 176]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 14 Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium]
Exercise 14 (B) | Q 10 | Page 176

RELATED QUESTIONS

If the diagonals of a parallelogram are equal, then show that it is a rectangle.


State, 'true' or 'false'
The diagonals of a rectangle bisect each other.


State, 'true' or 'false'
Every rhombus is a parallelogram.


State, 'true' or 'false'
 Diagonals of a rhombus are equal.


In a square ABCD, diagonals meet at O. P is a point on BC such that OB = BP.

Show that: 

  1. ∠POC = `[ 22 ( 1°)/( 2 ) ]`
  2. ∠BDC = 2 ∠POC
  3. ∠BOP = 3 ∠CPO

ABCD is a parallelogram having an area of 60cm2. P is a point on CD. Calculate the area of ΔAPB.


In the given figure, PQRS is a ∥ gm. A straight line through P cuts SR at point T and QR produced at N. Prove that area of triangle QTR is equal to the area of triangle STN.


Prove that the median of a triangle divides it into two triangles of equal area.


Find the area of a parallelogram whose base is 12cm and the height is 5cm.


Find the area of a square whose diagonal is `12sqrt(12)"cm"`


Find the perimeter of a rhombus whose diagonals are 24cm and 10cm.


The side of a square exceeds the side of another square by 4cm and the sum of the areas of the squares is 400cm2. Find the dimensions of the squares.


A rectangular field is 80m long and 50m wide. A 4m wide runs through the centre of the field parallel to the length and breadth of the field. Find the total area of the roads.


A rectangular field is 240m long and 180m broad. In one corner a farm house is built on a square plot of side 40m. Find the area of the remaining portion and the cost of fencing the open sides Rs.25per m.


The opposite sides of a rectangle are equal in length.


Give reasons for the following :

A square can be thought of as a special rhombus.


Give reason for the following :

Square is also a parallelogram.


Name polygon.

Make two more examples of this.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×