English

किसी गुणोत्तर श्रेणी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का 5 गुना है, तो सार्व अनुपात ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

किसी गुणोत्तर श्रेणी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का 5 गुना है, तो सार्व अनुपात ज्ञात कीजिए।

Sum

Solution

मान लीजिए गुणोत्तर श्रेणी का पहला पद = a सार्व अनुपात = r और पदों की संख्या = 2n

सभी पदों का योगफल = `("a"("r"^(2"n") - 1))/("r" - 1)`

विषम स्थानों पर रखे पद a, ar2, ar4, …. n पदों तक

इनका योग = a + ar2 + ar2 +…… n पदों तक

= `("a"[("r"^2)^"n" - 1])/("r"^2 - 1) = ("a"("r"^(2"n") - 1))/("r"^2 - 1)`

दिया है:

गुणोत्तर श्रेणी के 2n पदों का योगफल = 5 × [विषम स्थानों पर स्थित पदों का योगफल]

⇒ `("a"("r"^(2"n") - 1))/("r" - 1) = 5 xx ("a"[("r"^2)^"n" - 1])/("r"^2 - 1)`

या `("a"("r"^(2"n") - 1))/("r" - 1) = (5"a"("r"^(2"n") - 1))/("r"^2 - 1)`

`1 = 5/("r" + 1)`

या r + 1 = 5

या r = 4

shaalaa.com
गुणोत्तर श्रेणी
  Is there an error in this question or solution?
Chapter 9: अनुक्रम तथा श्रेणी - अध्याय 9 पर विविध प्रश्नावली [Page 213]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 9 अनुक्रम तथा श्रेणी
अध्याय 9 पर विविध प्रश्नावली | Q 11. | Page 213

RELATED QUESTIONS

गुणोत्तर श्रेणी `5/2, 5/4, 5/8, ......` का 20वाँ तथा nवाँ पद ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी का 5वाँ, 8वाँ तथा 11वाँ पद क्रमशः p, q तथा s हैं तो दिखाइए कि q2 = ps.


किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद –3 है तो 7वाँ पद ज्ञात कीजिए।


अनुक्रम का कौन सा पद:

`sqrt3, 3, 3 sqrt3`, ….; 729 है?


अनुक्रम का कौन सा पद:

`1/3, 1/9, 1/27` ,....., `1/19683` है?


x के किस मान के लिए संख्याएँ `-2/7, "x", (-7)/2` गुणोत्तर श्रेणी में हैं?


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

`sqrt7, sqrt21, 3sqrt7, .... n` पदों तक


मान ज्ञात कीजिए `sum_("k" = 1)^11  (2 + 3^"k")`


एक गुणोत्तर श्रेणी के तीन पदों का योगफल `39/10` है तथा उनका गुणनफल 1 है। सार्व अनुपात तथा पदों को ज्ञात कीजिए।


गुणोत्तर श्रेणी 3, 32, 33, …. के कितने पद आवश्यक हैं ताकि उनका योगफल 120 हो जाए।


किसी गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल 16 है तथा अगले तीन पदों का योग 128 है तो गुणोत्तर श्रेणी का प्रथम पद, सार्व अनुपात तथा n पदों का योगफल ज्ञात कीजिए।


एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है तो S7 ज्ञात कीजिए?


एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल –4 है तथा 5वाँ पद तृतीय पद का 4 गुना है।


अनुक्रम 8, 88, 888, 8888, …. के n पदों का योग ज्ञात कीजिए।


दिखाइए कि अनुक्रम a, ar, ar2, … arn – 1 तथा A, AR, AR2, …. ARn – 1 के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए। 


ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।


दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम n पदों के योगफल तथा (n + 1) वें पद से (2n)वें पद तक के पदों के योगफल का अनुपात `1/"r"^"n"` है।


यदि a, b, c तथा d गुणोत्तर श्रेणी में हैं तो दिखाइए कि (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2


गुणोत्तर श्रेणी के कुछ पदों का योग 315 है, उसका प्रथम पद तथा सार्व अनुपात क्रमशः 5 तथा 2 हैं। अंतिम पद तथा पदों की संख्या ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि P2Rn = Sn


यदि a, b, c, d गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि (an + bn), (bn + cn), (cn + dn) गुणोत्तर श्रेणी में हैं।


यदि x2 – 3x + p = 0 के मूल a तथा b हैं तथा x2 – 12x + q = 0, के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि (q + p) : (q – p) = 17 : 15


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×