English

Pranali and Prasad Started Walking to the East and to the North Respectively, from the Same Point and at the Same Speed. After 2 Hours Distance Between Them Was 15 √ 2 Km. Find Their Speed per Hour. - Geometry Mathematics 2

Advertisements
Advertisements

Question

Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was \[15\sqrt{2}\]

 km. Find their speed per hour.

 

Solution

It is given that, Pranali and Prasad have same speed.
Thus, they cover same distance in 2 hours.
i.e. OA = OB

Let the speed be x km per hour.

According to Pythagoras theorem,
In ∆AOB

\[{AB}^2 = {AO}^2 + {OB}^2 \]
\[ \Rightarrow \left( 15\sqrt{2} \right)^2 = {AO}^2 + {OA}^2 \]
\[ \Rightarrow 450 = 2 {AO}^2 \]
\[ \Rightarrow {AO}^2 = \frac{450}{2}\]
\[ \Rightarrow {AO}^2 = 225\]
\[ \Rightarrow AO = 15 km\]
\[ \Rightarrow BO = 15 km\]

\[\text{Speed} = \frac{Distance}{Time}\]
\[ = \frac{15}{2}\]
\[ = 7 . 5 \text{km per hour}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Pythagoras Theorem - Problem Set 2 [Page 45]

APPEARS IN

Balbharati Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
Chapter 2 Pythagoras Theorem
Problem Set 2 | Q 10 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The points A(4, 7), B(p, 3) and C(7, 3) are the vertices of a  right traingle ,right-angled at B. Find the values of p.


Tick the correct answer and justify: In ΔABC, AB = `6sqrt3` cm, AC = 12 cm and BC = 6 cm.

The angle B is:


ABC is a triangle right angled at C. If AB = 25 cm and AC = 7 cm, find BC.


Identify, with reason, if the following is a Pythagorean triplet.
(24, 70, 74)


In triangle ABC, AB = AC = x, BC = 10 cm and the area of the triangle is 60 cm2.
Find x.


In an isosceles triangle ABC; AB = AC and D is the point on BC produced.
Prove that: AD2 = AC2 + BD.CD.


In the following Figure ∠ACB= 90° and CD ⊥ AB, prove that  CD2  = BD × AD


In triangle PQR, angle Q = 90°, find: PQ, if PR = 34 cm and QR = 30 cm


Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm


A right triangle has hypotenuse p cm and one side q cm. If p - q = 1, find the length of third side of the triangle.


A ladder 15m long reaches a window which is 9m above the ground on one side of a street. Keeping its foot at the same point, the ladder is turned to other side of the street to reach a window 12m high. Find the width of the street.


From a point O in the interior of aΔABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove that: AF2 + BD2 + CE2 = AE2 + CD2 + BF2


In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.
Prove that: 9BP2 = 9BC2 + 4AC2


In a right-angled triangle ABC,ABC = 90°, AC = 10 cm, BC = 6 cm and BC produced to D such CD = 9 cm. Find the length of AD.


Determine whether the triangle whose lengths of sides are 3 cm, 4 cm, 5 cm is a right-angled triangle.


Find the unknown side in the following triangles


In the given figure, ∠T and ∠B are right angles. If the length of AT, BC and AS (in centimeters) are 15, 16, and 17 respectively, then the length of TC (in centimeters) is ______.


In an equilateral triangle PQR, prove that PS2 = 3(QS)2.


If the areas of two circles are the same, they are congruent.


The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground. Find the length of the ladder.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×