Advertisements
Advertisements
Question
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
cos x · cos 2x · cos 3x
Solution
माना, y = cos x · cos 2x · cos 3x …(1)
दोनों पक्षों को लघुगणक लेने पर,
log y = log (cos x · cos2x · cos 3x)
= log cos x + log cos 2 x + log cos 3x
....[∵ log m · n = log m + log n]
दोनों पक्षों में x के सापेक्ष अवकलन करने पर,
`1/y dy/dx = d/dx log cos x + d/dx log cos 2 x + d/dx log cos 3 x`
`1/y dy/dx = 1/(cos x) d/dx cos x + 1/(cos 2 x) d/dx cos 2 x _ 1/(cos 3 x) d/dx cos 3 x`
`= 1/cos x (- sin x) + 1/(cos 2 x) (- sin 2 x) d/dx (2x) + 1/(cos 3 x) (- sin 3 x) d/dx (3x)`
`= - sin/cos x - (sin 2 x)/(cos 2 x) (2) - (sin 3 x)/(cos 3 x) (3)`
`= -tan x - 2 tan 2 x - 3 tan 3 x = - (tan x + 2 tan 2x + 3 tan 3 x )`
`therefore dy/dx = - y (tan x + 2 tan 2 x + 3 tan 3 x)`
समीकरण (1) से y का मान रखने पर
`dy/dx = - cos x * cos 2 x * cos 3 x [tan x + 2 tan 2 x + 3 tan 3 x]`
APPEARS IN
RELATED QUESTIONS
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`sqrt(((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5)))`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(log x)^(cos x)`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`x^x - 2^(sin x)`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
(x + 3)2 · (x + 4)3 · (x + 5)4
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(x + 1/x)^x + x^((1 + 1/x))`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(log x)^x + x^log x`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(sin x)^x + sin^-1 sqrtx`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`x^(x cos x) + (x^2 + 1)/(x^2 - 1)`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(x cos x)^x + (x sin x)^(1/x)`
प्रश्न में प्रदत्त फलन के लिए `dy/dx` ज्ञात कीजिए:
xy + yx = 1
प्रश्न में प्रदत्त फलन के लिए `dy/dx` ज्ञात कीजिए:
yx = xy
प्रश्न में प्रदत्त फलन के लिए `dy/dx` ज्ञात कीजिए:
(cos x)y = (cos y)x
प्रश्न में प्रदत्त फलन के लिए `dy/dx` ज्ञात कीजिए:
xy = `e^(x - y)`
f(x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) द्वारा प्रदत्त फलन का अवकलज ज्ञात कीजिए और इस प्रकार f'(1) ज्ञात कीजिए।
(x² – 5x + 8) (x3 + 7x + 9) का अवकलन निम्नलिखित तीन प्रकार से कीजिए
- गुणनफल नियम का प्रयोग करके
- गुणनफल के विस्तारण द्वारा एक एकल बहुपद प्राप्त करके
- लघुगणकीय अवकलन द्वारा
यह भी सत्यापित कीजिए कि इस प्रकार प्राप्त तीनों उत्तर समान हैं।
यदि u, v और w, x के फलन हैं तो दो विधियों अर्थात् प्रथम-गुणनफल नियम की पुनरावृत्ति द्वारा, द्वितीय-लघुगणकीय अवकलन द्वारा दर्शाइए कि- `d/dx` (u. v. w) `= (du)/dx` v. w + u . `(dv)/dx` . w + u . v `(dw)/dx`
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x = a `(cos theta + theta sin theta)`, y = a `(sin theta - theta cos theta)`