Advertisements
Advertisements
Question
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(sin x)^x + sin^-1 sqrtx`
Solution
माना y = `(sin x)^x + sin^-1 sqrtx`
पुनः माना y = u + v
दोनों पक्षों का x के सापेक्ष अवकलन करने पर,
`dy/dx = (du)/dx + dv/dx` ...(1)
`therefore u = (sin x)^x`
दोनों पक्षों का लघुगुणक लेने पर,
log u = log `(sin x)^x` = x log sin x
दोनों पक्षों का x के साक्षेप अवकलन करने पर,
`1/u (du)/dx = x d/dx log sin x + log sin x d/dx (x)`
`= x 1/(sin x) d/dx (sin x) + log sin x xx 1`
`= x * 1/(sin x) * cos x + log sin x xx 1 = x cot x + log sin x`
`therefore (du)/dx = u (x cot x + log sin x)`
= (sin x)x [log sin x + x cot x] ...(2)
पुन: v = `sin^-1 sqrt x`
दोनों पक्षों का x के साक्षेप अवकलन करने पर,
`dv/dx = d/dx sin^-1 sqrt x = 1/sqrt(1 - x) d/dx x^(1/2)`
`= 1/sqrt(1 - x) 1/2 x^(-1/2)`
`= 1/(2sqrtx sqrt(1 - x))` ...(3)
समीकरण (2) तथा (3) से `(du)/dx` तथा `dv/dx` का मान समीकरण (1) में रखने पर,
`dy/dx = (sin x)^x [log sin x + x cot x] + 1/(2sqrt x sqrt(1 - x))`
APPEARS IN
RELATED QUESTIONS
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
cos x · cos 2x · cos 3x
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`sqrt(((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5)))`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(log x)^(cos x)`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`x^x - 2^(sin x)`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
(x + 3)2 · (x + 4)3 · (x + 5)4
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(x + 1/x)^x + x^((1 + 1/x))`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(log x)^x + x^log x`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
xsin x + (sin x)cos x
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`x^(x cos x) + (x^2 + 1)/(x^2 - 1)`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(x cos x)^x + (x sin x)^(1/x)`
प्रश्न में प्रदत्त फलन के लिए `dy/dx` ज्ञात कीजिए:
xy + yx = 1
प्रश्न में प्रदत्त फलन के लिए `dy/dx` ज्ञात कीजिए:
(cos x)y = (cos y)x
प्रश्न में प्रदत्त फलन के लिए `dy/dx` ज्ञात कीजिए:
xy = `e^(x - y)`
f(x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) द्वारा प्रदत्त फलन का अवकलज ज्ञात कीजिए और इस प्रकार f'(1) ज्ञात कीजिए।
(x² – 5x + 8) (x3 + 7x + 9) का अवकलन निम्नलिखित तीन प्रकार से कीजिए
- गुणनफल नियम का प्रयोग करके
- गुणनफल के विस्तारण द्वारा एक एकल बहुपद प्राप्त करके
- लघुगणकीय अवकलन द्वारा
यह भी सत्यापित कीजिए कि इस प्रकार प्राप्त तीनों उत्तर समान हैं।
यदि u, v और w, x के फलन हैं तो दो विधियों अर्थात् प्रथम-गुणनफल नियम की पुनरावृत्ति द्वारा, द्वितीय-लघुगणकीय अवकलन द्वारा दर्शाइए कि- `d/dx` (u. v. w) `= (du)/dx` v. w + u . `(dv)/dx` . w + u . v `(dw)/dx`
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x = a `(cos theta + theta sin theta)`, y = a `(sin theta - theta cos theta)`