Advertisements
Advertisements
Question
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`x^(x cos x) + (x^2 + 1)/(x^2 - 1)`
Solution
माना, y = `x^(x cos x) + (x^2 + 1)/(x^2 - 1)`
पुन: माना, y = u + v
दोनों पक्षों का x के साक्षेप अवकलन करने पर,
`dy/dx = (du)/dx + (dv)/dx` ...(1)
अब, u = `x^(x cos x)`
दोनों पक्षों का लघुगुणक लेने पर,
`log u = log x^(x cos x) = x cos x log x
दोनों पक्षों का x के साक्षेप अवकलन करने पर,
`1/u (du)/dx = x cos x d/dx log x + log x d/dx x cos x`
`= x cos x * 1/x + log x [x d/dx cos x + cos x d/dx (x)]`
= cos x + log x [x (- sin x) + cos x]
= cos x + x (- sin x) · log x + cos x · log x
`therefore (du)/dx =u [cos x log x - x sin x log x + cos x]`
= `x^(x cos x) [cos x log x - x sin x log x + cos x] ` ....(2)
पुन: `v = (x^2 + 1)/(x^2 - 1)`
दोनों पक्षों का x के साक्षेप अवकलन करने पर,
`(dv)/dx = ((x^2 - 1) d/dx (x^2 + 1) - (x^2 + 1) d/dx(x^2 - 1))/((x^2 - 1)^2)`
`= ((x^2 - 1)(2 x) - (x^2 + 1) (2 x))/((x^2 - 1)^2)`
`= (2 x [x^2 - 1 - x^2 - 1])/((x^2 - 1)^2)`
`= (-4x)/((x^2 - 1)^2)`
समीकरण (2) तथा (3) से `(du)/dx` तथा `(dv)/dx` के मान समीकरण (1) में रखने पर,
`therefore (dy)/dx = (du)/dx + (dv)/dx`
`= x^(x cos x) [cos x log x - x sin x log x + cos x] - (4x)/(x^2 - 1)^2`
APPEARS IN
RELATED QUESTIONS
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
cos x · cos 2x · cos 3x
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`sqrt(((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5)))`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(log x)^(cos x)`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`x^x - 2^(sin x)`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
(x + 3)2 · (x + 4)3 · (x + 5)4
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(x + 1/x)^x + x^((1 + 1/x))`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(log x)^x + x^log x`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(sin x)^x + sin^-1 sqrtx`
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
xsin x + (sin x)cos x
प्रश्न में प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए:
`(x cos x)^x + (x sin x)^(1/x)`
प्रश्न में प्रदत्त फलन के लिए `dy/dx` ज्ञात कीजिए:
xy + yx = 1
प्रश्न में प्रदत्त फलन के लिए `dy/dx` ज्ञात कीजिए:
(cos x)y = (cos y)x
प्रश्न में प्रदत्त फलन के लिए `dy/dx` ज्ञात कीजिए:
xy = `e^(x - y)`
f(x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) द्वारा प्रदत्त फलन का अवकलज ज्ञात कीजिए और इस प्रकार f'(1) ज्ञात कीजिए।
(x² – 5x + 8) (x3 + 7x + 9) का अवकलन निम्नलिखित तीन प्रकार से कीजिए
- गुणनफल नियम का प्रयोग करके
- गुणनफल के विस्तारण द्वारा एक एकल बहुपद प्राप्त करके
- लघुगणकीय अवकलन द्वारा
यह भी सत्यापित कीजिए कि इस प्रकार प्राप्त तीनों उत्तर समान हैं।
यदि u, v और w, x के फलन हैं तो दो विधियों अर्थात् प्रथम-गुणनफल नियम की पुनरावृत्ति द्वारा, द्वितीय-लघुगणकीय अवकलन द्वारा दर्शाइए कि- `d/dx` (u. v. w) `= (du)/dx` v. w + u . `(dv)/dx` . w + u . v `(dw)/dx`
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x = a `(cos theta + theta sin theta)`, y = a `(sin theta - theta cos theta)`