English
Karnataka Board PUCPUC Science Class 11

The Fundamental Frequency of a Vibrating Organ Pipe is 200 Hz. - Physics

Advertisements
Advertisements

Question

The fundamental frequency of a vibrating organ pipe is 200 Hz.

(a) The first overtone is 400 Hz.
(b) The first overtone may be 400 Hz.
(c) The first overtone may be 600 Hz.
(d) 600 Hz is an overtone.

Short Note

Solution

(b) The first overtone may be 400 Hz.
(c) The first overtone may be 600 Hz.
(d) 600 Hz is an overtone.

For an open organ pipe: \[\nu_n  = n \nu_1\] 

nth harmonic = (n – 1)th overtone 

\[\nu_1  = 200  Hz,    \nu_2  = 400  Hz,    \nu_3  = 600  Hz\]

If the pipe is an open organ pipe, then the 1st overtone is 400 Hz. Option (b) is correct.

Also, υ3 = 600 Hz, i.e., second overtone = 600 Hz.
600 Hz is an overtone. Therefore, option (d) is correct.

If the pipe is a closed organ pipe, then

\[\nu_n  = \left( 2n - 1 \right) \nu_1\]

(2n – 1)th harmonic = (n – 1)th overtone

For n = 2:
1st overtone = 3rd harmonic = 3υ1
                                           =3 × 200
                                           = 600 Hz
Therefore, option (c) is also correct.

shaalaa.com
Wave Motion
  Is there an error in this question or solution?
Chapter 16: Sound Waves - MCQ [Page 352]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 16 Sound Waves
MCQ | Q 3 | Page 352

RELATED QUESTIONS

Explain what is Doppler effect in sound


A wave is represented by an equation \[y =  c_1   \sin  \left( c_2 x + c_3 t \right)\] In which direction is the wave going? Assume that \[c_1 , c_2\] \[c_3\] are all positive. 


What is the smallest positive phase constant which is equivalent to 7⋅5 π?


If you are walking on the moon, can you hear the sound of stones cracking behind you? Can you hear the sound of your own footsteps?


A tuning fork sends sound waves in air. If the temperature of the air increases, which of the following parameters will change?


When sound wave is refracted from air to water, which of the following will remain unchanged?


When you speak to your friend, which of the following parameters have a unique value in the sound produced?


Sound waves from a loudspeaker spread nearly uniformly in all directions if the wavelength of the sound is much larger than the diameter of the loudspeaker. (a)Calculate the frequency for which the wavelength of sound in air is ten times the diameter of the speaker if the diameter is 20 cm. (b) Sound is essentially transmitted in the forward direction if the wavelength is much shorter than the diameter of the speaker. Calculate the frequency at which the wavelength of the sound is one tenth of the diameter of the speaker described above. Take the speed of sound to be 340 m/s.


The absolute temperature of air in a region linearly increases from T1 to T2 in a space of width d. Find the time taken by a sound wave to go through the region in terms of T1T2d and the speed v of sound at 273 K. Evaluate this time for T1 = 280 K, T2 = 310 K, d = 33 m and v = 330 m s−1.


The sound level at a point 5.0 m away from a point source is 40 dB. What will be the level at a point 50 m away from the source?


Figure shown two coherent sources S1 and S2 which emit sound of wavelength λ in phase. The separation between the sources is 3λ. A circular wire of large radius is placed in such way that S1,S2 is at the centre of the wire. Find the angular positions θ on the wire for which constructive interference takes place.


The separation between a node and the next antinode in a vibrating air column is 25 cm. If the speed of sound in air is 340 m s−1, find the frequency of vibration of the air column.


Consider the situation shown in the figure.The wire which has a mass of 4.00 g oscillates in its second harmonic and sets the air column in the tube into vibrations in its fundamental mode. Assuming that the speed of sound in air is 340 m s−1, find the tension in the wire.


A tuning fork produces 4 beats per second with another tuning fork of frequency 256 Hz. The first one is now loaded with a little wax and the beat frequency is found to increase to 6 per second. What was the original frequency of the tuning fork?


A car moves with a speed of 54 km h−1 towards a cliff. The horn of the car emits sound of frequency 400 Hz at a speed of 335 m s−1. (a) Find the wavelength of the sound emitted by the horn in front of the car. (b) Find the wavelength of the wave reflected from the cliff. (c) What frequency does a person sitting in the car hear for the reflected sound wave? (d) How many beats does he hear in 10 seconds between the sound coming directly from the horn and that coming after the reflection?


With propagation of longitudinal waves through a medium, the quantity transmitted is ______.


During propagation of a plane progressive mechanical wave ______.

  1. all the particles are vibrating in the same phase.
  2. amplitude of all the particles is equal.
  3. particles of the medium executes S.H.M.
  4. wave velocity depends upon the nature of the medium.

The speed of a wave in a string is 20 m/s and the frequency is 50 Hz. The phase difference between two points on the string 10 cm apart will be ______.


In the wave equation

`y = 0.5sin  (2pi)/lambda(400t - x)m`

the velocity of the wave will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×