हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is doubled? - Chemistry

Advertisements
Advertisements

प्रश्न

A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is doubled?

संख्यात्मक

उत्तर

Rate of reaction, R = k [A]2

If the concentration of the reactant is doubled, i.e. [A] = 2R, then the rate of the reaction would be R = k(2R)2

= 4kR2

= 4 R

Therefore, the rate of the reaction would increase by 4 times.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Chemical Kinetics - Exercises [पृष्ठ ११८]

APPEARS IN

एनसीईआरटी Chemistry [English] Class 12
अध्याय 4 Chemical Kinetics
Exercises | Q 6 | पृष्ठ ११८

संबंधित प्रश्न

In a first order reaction x → y, 40% of the given sample of compound remains unreacted in 45 minutes. Calculate rate constant of the reaction.


A → B is a first order reaction with rate 6.6 × 10-5m-s-1. When [A] is 0.6m, rate constant of the reaction is

  • 1.1 × 10-5s-1
  • 1.1 × 10-4s-1
  • 9 × 10-5s-1
  • 9 × 10-4s-1

Write molecularity of the following reaction:

2NO(g)+O2(g)→2NO2(g)


For the first order thermal decomposition reaction, the following data were obtained:

Time / sec               Totalpressure / atm

0                              0.30

300                          0.50

Calculate the rate constant

(Given: log 2 = 0.301, log3 = 0.4771, log 4 = 0.6021)


Write two factors that affect the rate of reaction.


The following data were obtained during the first order thermal decomposition of SO2Cl2 at a constant volume :

SO2Cl2 (g) → SO2 (g) + Cl2 (g)

Experiment Time/s–1 Total pressure/atm
1 0 0.4
2 100 0.7

Calculate the rate constant.

(Given : log 4 = 0.6021, log 2 = 0.3010)


The conversion of molecules X to Y follows second order kinetics. If concentration of X is increased to three times how will it affect the rate of formation of Y?


A reaction is first order in A and second order in B. How is the rate affected on increasing the concentration of B three times?

 


How does calcination differ from roasting?


Molecularity of a reaction _____________.


Compounds ‘A’ and ‘B’ react according to the following chemical equation.
\[\ce{A(g) + 2B(g) -> 2C(g)}\]
Concentration of either ‘A’ or ‘B’ were changed keeping the concentrations of one of the reactants constant and rates were measured as a function of initial concentration. Following results were obtained. Choose the correct option for the rate equations for this reaction.

Experiment Initial
concentration
of [A]/mol L¹
Initial
concentration
of [B]/mol L¹
Initial rate of
formation of
[C]/mol L¹ s¹
1. 0.30 0.30 0.10
2. 0.30 0.60 0.40
3. 0.60 0.30 0.20

Consider the reaction A ⇌ B. The concentration of both the reactants and the products varies exponentially with time. Which of the following figures correctly describes the change in concentration of reactants and products with time?


Assertion: The enthalpy of reaction remains constant in the presence of a catalyst.

Reason: A catalyst participating in the reaction, forms different activated complex and lowers down the activation energy but the difference in energy of reactant and product remains the same.


In the presence of a catalyst, the heat evolved or absorbed during the reaction.


For a reaction \[\ce{Cl2l(g) + 2No(g) -> 2NaCl(g)}\] the rate law is expressed as rate= K[Cl2] [No]2 what is the order of the reaction?


At concentration of 0.1 and 0.2 mol L–1 the rates of deem position of a compound were found to be 0.18 and 0.72 mol L–1 m–1. What is the order of the reaction?


The conversion of molecules A to B follow second order kinetics. If concentration of A is increased to three times, how will it affect the rate of formation of B?


The following data was obtained for chemical reaction given below at 975 K.

\[\ce{2NO(g) + 2H2(g) -> N2(g) + 2H2O(g)}\]

  [NO] [H2] Rate
  Mol L-1 Mol L-1 Mol L-1 s-1
(1) 8 × 10-5 8 × 10-5 7 × 10-9
(2) 24 × 10-5 8 × 10-5 2.1 × 10-8
(3) 24 × 10-5 32 × 10-5 8.4 × 10-8

The order of the reaction with respect to NO is ______. (Integer answer)


Which of the following statement is true?


A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is reduced to half?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×