हिंदी

Define "Molar conductivity". - Chemistry

Advertisements
Advertisements

प्रश्न

Define "Molar conductivity".

Define molar conductivity for the solution of an electrolyte.

परिभाषा

उत्तर १

Molar conductivity is the conductance of a volume of solution containing 1 mole of dissolved electrolyte when placed between two parallel electrodes 1 cm apart and large enough to contain between them all the solution.

shaalaa.com

उत्तर २

The conductivity, which is shown by all the ions when 1 mol of electrolyte is dissolved in the solution, is called molar conductivity; it is expressed by ∧m (lambda). If 1 mol of electrolyte is present in V cm3 of electrolyte solution, then ∧m = κ × V

= `(κ xx 1000)/"Molarity" = (κ xx 1000)/"M"`

Its unit is ohm−1 cm2 mol1 or S cm2 mol1.

shaalaa.com

Notes

Students should refer to the answer according to their questions

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

APPEARS IN

संबंधित प्रश्न

The conductivity of 0.20 M solution of KCl at 298 K is 0.025 S cm−1. Calculate its molar conductivity.


The conductivity of 0.001 mol L-1 solution of CH3COOH is 3.905× 10-5 S cm-1. Calculate its molar conductivity and degree of dissociation (α) Given λ°(H+)= 349.6 S cm2 mol-1 and λ°(CH3COO)= 40.9S cm2mol-1.


Why conductivity of an electrolyte solution decreases with the decrease in concentration ?


Why does the conductivity of a solution decrease with dilution?


The molar conductivity of 0.025 mol L−1 methanoic acid is 46.1 S cm2 mol1. Calculate its degree of dissociation and dissociation constant. Given \[\ce{λ^0_{(H^+)}}\] = 349.6 S cm2 mol1 and \[\ce{λ^0_{(HCOO^-)}}\] = 54.6 S cm2 mol1.


The conductivity of sodium chloride at 298 K has been determined at different concentrations and the results are given below:

Concentration/M 0.001 0.010 0.020 0.050 0.100
102 × κ/S m−1 1.237 11.85 23.15 55.53 106.74

Calculate `∧_"m"`for all concentrations and draw a plot between `∧_"m"`and `"c"^(1/2)`. Find the value of `∧_"m"^0`.


Conductivity of 0.00241 M acetic acid is 7.896 × 10−5 S cm−1. Calculate its molar conductivity and if `∧_"m"^0` for acetic acid is 390.5 S cm2 mol−1, what is its dissociation constant?


10.0 grams of caustic soda when dissolved in 250 cm3 of water, the resultant gram molarity of solution is _______.

(A) 0.25 M

(B) 0.5 M

(C) 1.0 M

(D) 0.1 M


Calculate the degree of dissociation (α) of acetic acid if its molar conductivity (Λm) is 39.05 S cm2 mol−1.

Given λ°(H+) = 349.6 S cm2 mol−1 and λ°(CH3COO) = 40.9 S cm2 mol−1


 How can you determine limiting molar conductivity,   0 m for strong electrolyte and weak electrolyte?


In the plot of molar conductivity (∧m) vs square root of concentration (c1/2) following curves are obtained for two electrolytes A and B : 

Answer the following:
(i) predict the nature of electrolytes A and B.
(ii) What happens on the extrapolation of ∧m to concentration approaching for electrolytes A and B?


In the plot of molar conductivity (∧m) vs square root of concentration (c1/2), following curves are obtained for two electrolytes A and B:

Answer the following:
(i) Predict the nature of electrolytes A and B.
(ii) What happens on extrapolation of ∧m to concentration approaching zero for electrolytes A and B?


Molar conductivity denoted by the symbol Λm is related to the conductivity of the solution by the equation (k is the conductivity and c is the concentration).


Conductivity always decreases with decrease in concentration both, for weak and strong electrolytes because of the fact that ____________.


Kohlrausch law of independent migration of ions states ____________.


Which of the statements about solutions of electrolytes is not correct?


Molar conductivity of ionic solution depends on:

(i) temperature.

(ii) distance between electrodes.

(iii) concentration of electrolytes in solution.

(iv) surface area of electrodes.


Why on dilution the m Λm of \[\ce{CH3COOH}\] increases very fast, while that of \[\ce{CH3COONa}\] increases gradually?


Assertion: Λm for weak electrolytes shows a sharp increase when the electrolytic solution is diluted.

Reason: For weak electrolytes degree of dissociation increases with dilution of solution.


Assertion: `"E"_("Ag"^+ //"Ag")` increases with increase in concentration of Ag+ ions.

Reason: `"E"_("Ag"^+ //"Ag")` has a positive value.


Assertion: Copper sulphate can be stored in zinc vessel.

Reason: Zinc is less reactive than copper.


Consider figure and answer the question to given below.

How will the concentration of Zn2+ ions and Ag+ ions be affected after the cell becomes ‘dead’?


Solutions of two electrolytes ‘A’ and ‘B’ are diluted. The Λm of ‘B’ increases 1.5 times while that of A increases 25 times. Which of the two is a strong electrolyte? Justify your answer. Graphically show the behavior of ‘A’ and ‘B’.


The molar conductivity of CH3COOH at infinite dilution is 390 Scm2/mol. Using the graph and given information, the molar conductivity of CH3COOK will be:


The solubility of Co2[Fe(CN)6] in water at 25°C from the following data:

Conductivity of saturated solution of Co2[Fe(CN)6] = 2.06 × 10−6 ohm−1 cm−1 and that of water = 4.1 × 10−7 ohm−1 cm−1. The ionic molar conductivities of Co2+ and [Fe(CN)6]4− are 86 and 444 ohm−1 cm2 mol−1 respectively, is ______ × 10−6 mol/L.


The variation of molar conductivity with concentration of an electrolyte (X) m aqueous solution is shown in the given figure.

The electrolyte X is ______.


Which of the following solutions of KCl will have the highest value of molar conductivity?


Conductivity of 2 × 10−3 M methanoic acid is 8 × 10−5 S cm−1. Calculate its molar conductivity and degree of dissociation if `∧_"m"^0` for methanoic acid, is 404 S cm2 mol−3.


Assertion (A): Molar conductivity decreases with increase in concentration.

Reason (R): When concentration approaches zero, the molar conductivity is known as limiting molar conductivity.


The following questions are case-based questions. Read the passage carefully and answer the questions that follow:

Rahul set up an experiment to find the resistance of aqueous KCl solution for different concentrations at 298 K using a conductivity cell connected to a Wheatstone bridge. He fed the Wheatstone bridge with a.c. power in the audio frequency range 550 to 5000 cycles per second. Once the resistance was calculated from the null point, he also calculated the conductivity K and molar conductivity ∧m and recorded his readings in tabular form.
S. No. Conc.
(M)
k S cm−1 m S cm2 mol−1
1. 1.00 111.3 × 10−3 111.3
2. 0.10 12.9 × 10−3 129.0
3. 0.01 1.41 × 10−3 141.0

Answer the following questions:

(a) Why does conductivity decrease with dilution? (1)

(b) If `∧_"m"^0` of KCl is 150.0 S cm2 mol−1, calculate the degree of dissociation of 0.01 M KCI. (1)

(c) If Rahul had used HCl instead of KCl then would you expect the ∧m values to be more or less than those per KCl for a given concentration? Justify. (2)

OR

(c) Amit a classmate of Rahul repeated the same experiment with CH3COOH solution instead of KCl solution. Give one point that would be similar and one that would be different in his observations as compared to Rahul. (2)


The specific conductance of 2.5 × 10-4 M formic acid is 5.25 × 10-5 ohm-1 cm-1. Calculate its molar conductivity and degree of dissociation.

Given `λ°_("H"^+)` = 349.5 ohm-1 cm2 mol-1 and

`λ°_("HCOO"^-)  = 50.5 " ohm"^-1 "cm"^2  "mol"^-1`


Suggest a way to determine the `∧_"m"^∘`value of water.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×