मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

In an Elastic Collision - Physics

Advertisements
Advertisements

प्रश्न

In an elastic collision

पर्याय

  • the initial kinetic energy is equal to the final kinetic energy

  • the final kinetic energy is less than the initial kinetic energy

  • the kinetic energy remains constant

  • the kinetic energy first increases then decreases.

MCQ

उत्तर

the final kinetic energy is less than the initial kinetic energy

As some energy is loss into heat in an inelastic collision, the final kinetic energy is less than the initial kinetic energy.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Centre of Mass, Linear Momentum, Collision - MCQ [पृष्ठ १५८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 9 Centre of Mass, Linear Momentum, Collision
MCQ | Q 19 | पृष्ठ १५८

संबंधित प्रश्‍न

Give the location of the centre of mass of a

  1. sphere,
  2. cylinder,
  3. ring, and
  4. cube,

each of uniform mass density. Does the centre of mass of a body necessarily lie inside the body?


You are waiting for a train on a railway platform. Your three-year-old niece is standing on your iron trunk containing the luggage. Why does the trunk not recoil as she jumps off on the platform?


You are holding a cage containing a bird. Do you have to make less effort if the bird flies from its position in the cage and manages to stay in the middle without touching the walls of the cage? Does it makes a difference whether the cage is completely closed or it has rods to let air pass?


Consider the following two statements:

(A) Linear momentum of the system remains constant.

(B) Centre of mass of the system remains at rest.


In which of the following cases the centre of mass of a rod is certainly not at its centre? 
(a) the density continuously increases from left to right
(b) the density continuously decreases from left to right
(c) the density decreases from left to right upto the centre and then increases
(d) the density increases from left to right upto the centre and then decreases.


A nonzero external force acts on a system of particles. The velocity and the acceleration of the centre of mass are found to be v0 and a0 at instant t. It is possible that
(a) v0 = 0, a0 = 0
(b) v0 = 0, a0 ≠ 0
(c) v0 ≠ 0, a0 = 0
(d) v0 ≠ 0, a0 ≠ 0


Calculate the velocity of the centre of mass of the system of particles shown in figure.


A car of mass M is at rest on a frictionless  horizontal surface and a pendulum bob of mass m hangs from the roof of the cart. The string breaks, the bob falls on the floor, makes serval collisions on the floor and finally lands up in a small slot made in the floor. The horizontal distance between the string and the slot is L. Find the displacement of the cart during this process.


A ball of mass m is dropped onto a floor from a certain height. The collision is perfectly elastic and the ball rebounds to the same height and again falls. Find the average force exerted by the ball on the floor during a long time interval. 


In an elastic collision


Consider the situation of the previous problem. Suppose each of the blocks is pulled by a constant force F instead of any impulse. Find the maximum elongation that the spring will suffer and the distance moved by the two blocks in the process. 


A block of mass m is placed on a triangular block of mass M which in turn is placed on a horizontal surface as shown in figure. Assuming frictionless surfaces find the velocity of the triangular block when the smaller block reaches the bottom end.


Two small balls A and B, each of mass m, are joined rigidly to the ends of a light rod of length L (see the following figure). The system translates on a frictionless horizontal surface with a velocity \[\nu_0\] in a direction perpendicular to the rod. A particle P of mass m kept at rest on the surface sticks to the ball A as the ball collides with it. Find
(a) the linear speeds of the balls A and B after the collision, (b) the velocity of the centre of mass C of the system A + B + P and (c) the angular speed of the system about C after the collision.

[Hint : The light rod will exert a force on the ball B
only along its length.]


Solve the following problem.

Four uniform solid cubes of edges 10 cm, 20 cm, 30 cm and 40 cm are kept on the ground, touching each other in order. Locate centre of mass of their system.


Solve the following problem.

A uniform solid sphere of radius R has a hole of radius R/2 drilled inside it. One end of the hole is at the center of the sphere while the other is at the boundary. Locate center of mass of the remaining sphere.


The centre of mass of a system of particles does not depend upon, ______


A body of mass 2 kg is acted upon by two forces each of magnitude 1 N and inclined at 60° with each other. The acceleration of the body in m/s is ____________. [cos 60° = 0.5]


Separation of Motion of a system of particles into motion of the centre of mass and motion about the centre of mass:

  1. Show pi = p’+ miV Where pi is the momentum of the ith particle (of mass mi)  and p′ i = mi v′ i. Note v′ i is the velocity of the ith particle relative to the centre of mass. Also, prove using the definition of the centre of mass `sum"p""'"_"t" = 0`
  2. Show K = K′ + 1/2MV2

    where K is the total kinetic energy of the system of particles, K′ is the total kinetic energy of the
    system when the particle velocities are taken with respect to the centre of mass and MV2/2 is the
    kinetic energy of the translation of the system as a whole (i.e. of the centre of mass motion of the
    system). The result has been used in Sec. 7.14.

  3. Show where `"L""'" = sum"r""'"_"t" xx "p""'"_"t"` is the angular momentum of the system about the centre of mass with
    velocities taken relative to the centre of mass. Remember `"r"_"t" = "r"_"t" - "R"`; rest of the notation is the standard notation used in the chapter. Note L′ and MR × V can be said to be angular momenta, respectively, about and of the centre of mass of the system of particles.
  4. Show `"dL"^"'"/"dt" = ∑"r"_"i"^"'" xx "dP"^"'"/"dt"`
    Further show that `"dL"^'/"dt" = τ_"ext"^"'"`
    Where `"τ"_"ext"^"'"` is the sum of all external torques acting on the system about the centre of mass.
    (Hint: Use the definition of centre of mass and third law of motion. Assume the internal forces between any two particles act along the line joining the particles.)

Find the centre of mass of a uniform (a) half-disc, (b) quarter-disc.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×