Advertisements
Advertisements
Question
A chord of circle of radius 14cm makes a right angle at the centre. Find the areas of minor and major segments of the circle.
Solution
Radius (r) = 14cm
๐ = 90°
= OA = OB
Area of minor segment (ANB)
= (๐๐๐๐ ๐๐ ๐ด๐๐ต ๐ ๐๐๐ก๐๐) − (๐๐๐๐ ๐๐ Δ๐ด๐๐ต)
=`theta/360^@× pir^2 −1/2`× ๐๐ด × ๐๐ต
=`90/360×22/7× 14 × 14 −1/2× 14 × 14`
= 154 − 98 = 56๐๐2
Area of major segment (other than shaded)
= area of circle – area of segment ANB
= ๐๐2 − 56
=`22/7`× 14 × 14 − 56
= 616 – 56
= 560 cm2.
APPEARS IN
RELATED QUESTIONS
Find the area of the minor segment of a circle of radius 14 cm, when its central angle is 60ห. Also find the area of the corresponding major segment.[use π=22/7]
AB is the diameter of a circle, centre O. C is a point on the circumference such that ∠COB = ๐. The area of the minor segment cutoff by AC is equal to twice the area of sector BOC.Prove that `"sin"theta/2. "cos"theta/2= pi (1/2−theta/120^@)`
In the given figure, if O is the center of the circle, PQ is a chord. \[\angle\] POQ = 90°, area of the shaded region is 114 cm2, find the radius of the circle. \[\pi\] = 3.14)
The length of the minute hand of a clock is 5 cm. Find the area swept by the minute hand during the time period 6 : 05 am and 6 : 40 am.
A cow is tied with a rope of length 14 m at the corner of a rectangular field of dimensions 20 m × 16 m. Find the area of the field in which the cow can graze.
Four cows are tethered at the four corners of a square field of side 50 m such that the each can graze the maximum unshared area. What area will be left ungrazed?
If `theta` is the angle in degrees of a sector of a circle of radius V, then area of the sector is ____________.
The number of revolutions made by a circular wheel of radius 0.7m in rolling a distance of 176m is ______.
Find the area of a sector of a circle of radius 28 cm and central angle 45°.
Four circular cardboard pieces of radii 7 cm are placed on a paper in such a way that each piece touches other two pieces. Find the area of the portion enclosed between these pieces.