English

A Man Goes 40 M Due North and Then 50 M Due West. Find His Distance from the Starting Point - Mathematics

Advertisements
Advertisements

Question

A man goes 40 m due north and then 50 m due west. Find his distance from the starting point.

Sum

Solution

Here, we need to measure the distance AB as shown in the figure below,

Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides.

Therefore, in this case
AB2 = BC2 + CA
AB2 = 502 + 40
AB2 =  2500 + 1600
AB2 = 4100
AB = 64.03
Therefore the required distance is 64.03 m.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Pythagoras Theorem [Proof and Simple Applications with Converse] - Exercise 13 (A) [Page 158]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 13 Pythagoras Theorem [Proof and Simple Applications with Converse]
Exercise 13 (A) | Q 2 | Page 158

RELATED QUESTIONS

In the given figure, ABC is a triangle in which ∠ABC> 90° and AD ⊥ CB produced. Prove that AC2 = AB2 + BC2 + 2BC.BD.


In the given figure, ABC is a triangle in which ∠ABC < 90° and AD ⊥ BC. Prove that AC2 = AB2 + BC2 − 2BC.BD.


A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.


Which of the following can be the sides of a right triangle?

2.5 cm, 6.5 cm, 6 cm

In the case of right-angled triangles, identify the right angles.


Identify, with reason, if the following is a Pythagorean triplet.
(10, 24, 27)


Find the side and perimeter of a square whose diagonal is 10 cm.


Some question and their alternative answer are given. Select the correct alternative.

If a, b, and c are sides of a triangle and a+ b= c2, name the type of triangle.


ABC is a triangle, right-angled at B. M is a point on BC.

Prove that: AM2 + BC2 = AC2 + BM2


In the following Figure ∠ACB= 90° and CD ⊥ AB, prove that  CD2  = BD × AD


Find the length of diagonal of the square whose side is 8 cm.


If P and Q are the points on side CA and CB respectively of ΔABC, right angled at C, prove that (AQ2 + BP2 ) = (AB2 + PQ2)


In triangle PQR, angle Q = 90°, find: PR, if PQ = 8 cm and QR = 6 cm


Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm


In the right-angled ∆LMN, ∠M = 90°. If l(LM) = 12 cm and l(LN) = 20 cm, find the length of seg MN.


AD is perpendicular to the side BC of an equilateral ΔABC. Prove that 4AD2 = 3AB2.


There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?


The hypotenuse of a right angled triangle of sides 12 cm and 16 cm is __________


In ∆PQR, PD ⊥ QR such that D lies on QR. If PQ = a, PR = b, QD = c and DR = d, prove that (a + b)(a – b) = (c + d)(c – d).


Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?


The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground. If the ladder is shifted in such a way that its foot is 8 m away from the wall, to what height does its top reach?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×