English

∆Abc is an Isosceles Triangle in Which ∠C = 90. If Ac = 6 Cm, Then Ab = (A) 6 √ 2 C M (B) 6 Cm (C) 2 √ 6 C M (D) 4 √ 2 C M - Mathematics

Advertisements
Advertisements

Question

∆ABC is an isosceles triangle in which ∠C = 90. If AC = 6 cm, then AB = 

Options

  • \[6\sqrt{2} cm\]
  • 6 cm

  • \[2\sqrt{6} cm\]
  • \[4\sqrt{2} cm\]
MCQ

Solution

Given: In an isosceles ΔABC, `∠C= 90^o`, AC = 6 cm.

To find: AB

In an isosceles ΔABC, `∠C= 90^o`,.

Therefore, BC = AC = 6 cm

Applying Pythagoras theorem in ΔABC, we get

`AB^2=AC^2+BC^2`

`AB^2=6^2+6^2(AC=BC)`(Side of isosceles triangle)

`AB^2=36+36`

`AB^2=72`

`AB= 6sqrt2 cm`

We got the result as `a`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Triangles - Exercise 7.10 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 7 Triangles
Exercise 7.10 | Q 30 | Page 133

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×