English
Karnataka Board PUCPUC Science Class 11

An Electric Field → E = ( → I 20 + → J 30 ) N C − 1 Exists in Space. If the Potential at the Origin is Taken to Be Zero, Find the Potential at (2 M, 2 M). - Physics

Advertisements
Advertisements

Question

An electric field  \[\vec{E}  = ( \vec{i} 20 +  \vec{j} 30)   {NC}^{- 1}\]  exists in space. If the potential at the origin is taken to be zero, find the potential at (2 m, 2 m).

 
Numerical

Solution

Given:

\[\vec{E}  = ( \vec{i} 20 +  \vec{j} 30)  \] N/C 

\[\vec{r}  = (2 \vec{i}  + 2 \vec{j} )\]

So,

\[V =  -  \vec{E}  .  \vec{r}\]

\[\Rightarrow V =  - ( \vec{i} 20 + 30 \vec{j} ) .   (2 \vec{i}  + 2 \vec{j} )\] 

\[ \Rightarrow V =  - (2 \times 20 + 2 \times 30) =  - 100\] V

shaalaa.com
Electric Field - Electric Field Due to a System of Charges
  Is there an error in this question or solution?
Chapter 7: Electric Field and Potential - Exercises [Page 123]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 7 Electric Field and Potential
Exercises | Q 58 | Page 123

RELATED QUESTIONS

The figure shows tracks of three charged particles in a uniform electrostatic field. Give the signs of the three charges. Which particle has the highest charge to mass ratio?


Consider a system of n charges q1, q2, ... qn with position vectors `vecr_1,vecr_2,vecr_3,...... vecr_n`relative to some origin 'O'. Deduce the expression for the net electric field`vec E` at a point P with position vector `vecr_p,`due to this system of charges.


A hollow cylindrical box of length 0.5 m and area of cross-section 25 cm2 is placed in a three dimensional coordinate system as shown in the figure. The electric field in the region is given by `vecE = 20 xhati`  where E is NC­−1 and x is in metres. Find

(i) Net flux through the cylinder.

(ii) Charge enclosed by the cylinder.


The electric field at the origin is along the positive x-axis. A small circle is drawn with the centre at the origin, cutting the axes at points A, B, C and D with coordinates (a, 0), (0, a), (−a, 0), (0, −a), respectively. Out of the points on the periphery of the circle, the potential is minimum at  


If a body is charged by rubbing it, its weight


Which of the following quantities does not depend on the choice of zero potential or zero potential energy?


A particle of mass m and charge q is thrown at a speed u against a uniform electric field E. How much distance will it travel before coming to momentary rest ? 


A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1. Find the electric force and the force of gravity acting on this particle. Can one of these forces be neglected in comparison with the other for approximate analysis?


A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1. What will be the speed of the particle after travelling this distance? 


12 J of work has to be done against an existing electric field to take a charge of 0.01 C from A to B. How much is the potential difference  VB − VA


An electric field of 20 NC−1 exists along the x-axis in space. Calculate the potential difference VB − VA where the points A and B are
(a) A = (0, 0); B = (4 m, 2m)
(b) A = (4 m, 2 m); B = (6 m, 5 m)
(c) A = (0, 0); B = (6 m, 5 m)
Do you find any relation between the answers of parts (a), (b) and (c)?  


The electric potential existing in space is \[\hspace{0.167em} V(x,   y,   z) = A(xy + yz + zx) .\] (a) Write the dimensional formula of A. (b) Find the expression for the electric field. (c) If A is 10 SI units, find the magnitude of the electric field at (1 m, 1 m, 1 m).


For distance far away from centre of dipole the change in magnitude of electric field with change in distance from the centre of dipole is ______.

In general, metallic ropes are suspended on the carriers taking inflammable materials. The reason is ______.


Two similar spheres having +Q and -Q charges are kept at a certain distance. F force acts between the two. If at the middle of two spheres, another similar sphere having +Q charge is kept, then it experiences a force in magnitude and direction as ______.


The Electric field at a point is ______.

  1. always continuous.
  2. continuous if there is no charge at that point.
  3. discontinuous only if there is a negative charge at that point.
  4. discontinuous if there is a charge at that point.

Five charges, q each are placed at the corners of a regular pentagon of side ‘a’ (Figure).

(a) (i) What will be the electric field at O, the centre of the pentagon?

(ii) What will be the electric field at O if the charge from one of the corners (say A) is removed?

(iii) What will be the electric field at O if the charge q at A is replaced by –q?

(b) How would your answer to (a) be affected if pentagon is replaced by n-sided regular polygon with charge q at each of its corners?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×