English

Calculate the Acceleration When It is at 4 Cm from Its Positive Extreme Position. - Physics

Advertisements
Advertisements

Question

A particle in S.H.M. has a period of 2 seconds and amplitude of 10 cm. Calculate the acceleration when it is at 4 cm from its positive extreme position.

Solution

A particle in SHM has a period of 2 seconds and an amplitude of 10 cm. When it is at 4 cm from its positive extreme position, the displacement (x) of the particle is 10 - 4 = 6 cm.

Acceleration = ω2.x (in magnitude)

`=((2pi)/T)^2x`

`=(4pi^2)/(2)^2xx 6`

= 59.16 cm/s2

 Thus, the acceleration of the particle at 4 cm from its positive extreme position is 59.16 cm/s2.

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The average displacement over a period of S.H.M. is ______.

(A = amplitude of S.H.M.)


Can simple harmonic motion take place in a non-inertial frame? If yes, should the ratio of the force applied with the displacement be constant?


A particle executes simple harmonic motion. If you are told that its velocity at this instant is zero, can you say what is its displacement? If you are told that its velocity at this instant is maximum, can you say what is its displacement?


A block of known mass is suspended from a fixed support through a light spring. Can you find the time period of vertical oscillation only by measuring the extension of the spring when the block is in equilibrium?


A platoon of soldiers marches on a road in steps according to the sound of a marching band. The band is stopped and the soldiers are ordered to break the steps while crossing a bridge. Why?


The distance moved by a particle in simple harmonic motion in one time period is


A particle moves on the X-axis according to the equation x = A + B sin ωt. The motion is simple harmonic with amplitude


A pendulum clock that keeps correct time on the earth is taken to the moon. It will run


Suppose a tunnel is dug along a diameter of the earth. A particle is dropped from a point, a distance h directly above the tunnel. The motion of the particle as seen from the earth is
(a) simple harmonic
(b) parabolic
(c) on a straight line
(d) periodic


A particle moves on the X-axis according to the equation x = x0 sin2 ωt. The motion is simple harmonic


In a simple harmonic motion
(a) the maximum potential energy equals the maximum kinetic energy
(b) the minimum potential energy equals the minimum kinetic energy
(c) the minimum potential energy equals the maximum kinetic energy
(d) the maximum potential energy equals the minimum kinetic energy


An object is released from rest. The time it takes to fall through a distance h and the speed of the object as it falls through this distance are measured with a pendulum clock. The entire apparatus is taken on the moon and the experiment is repeated
(a) the measured times are same
(b) the measured speeds are same
(c) the actual times in the fall are equal
(d) the actual speeds are equal


A pendulum having time period equal to two seconds is called a seconds pendulum. Those used in pendulum clocks are of this type. Find the length of a second pendulum at a place where = π2 m/s2.


A pendulum clock giving correct time at a place where g = 9.800 m/s2 is taken to another place where it loses 24 seconds during 24 hours. Find the value of g at this new place.


A simple pendulum of length 40 cm is taken inside a deep mine. Assume for the time being that the mine is 1600 km deep. Calculate the time period of the pendulum there. Radius of the earth = 6400 km.


A simple pendulum of length l is suspended through the ceiling of an elevator. Find the time period of small oscillations if the elevator (a) is going up with and acceleration a0(b) is going down with an acceleration a0 and (c) is moving with a uniform velocity.


A closed circular wire hung on a nail in a wall undergoes small oscillations of amplitude 20 and time period 2 s. Find (a) the radius of the circular wire, (b) the speed of the particle farthest away from the point of suspension as it goes through its mean position, (c) the acceleration of this particle as it goes through its mean position and (d) the acceleration of this particle when it is at an extreme position. Take g = π2 m/s2.


A particle executing SHM crosses points A and B with the same velocity. Having taken 3 s in passing from A to B, it returns to B after another 3 s. The time period is ____________.


A simple pendulum is suspended from the roof of a school bus which moves in a horizontal direction with an acceleration a, then the time period is


A simple pendulum has a time period T1. When its point of suspension is moved vertically upwards according to as y = kt2, where y is the vertical distance covered and k = 1 ms−2, its time period becomes T2. Then, T `"T"_1^2/"T"_2^2` is (g = 10 ms−2)


If the inertial mass and gravitational mass of the simple pendulum of length l are not equal, then the time period of the simple pendulum is


What is an epoch?


Write short notes on two springs connected in series.


What is meant by simple harmonic oscillation? Give examples and explain why every simple harmonic motion is a periodic motion whereas the converse need not be true.


Consider the Earth as a homogeneous sphere of radius R and a straight hole is bored in it through its centre. Show that a particle dropped into the hole will execute a simple harmonic motion such that its time period is

T = `2π sqrt("R"/"g")`


A simple harmonic motion is given by, x = 2.4 sin ( 4πt). If distances are expressed in cm and time in seconds, the amplitude and frequency of S.H.M. are respectively, 


What is the ratio of maxmimum acceleration to the maximum velocity of a simple harmonic oscillator?


A body having specific charge 8 µC/g is resting on a frictionless plane at a distance 10 cm from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of 100 V/m is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be ______ s.


Assume there are two identical simple pendulum clocks. Clock - 1 is placed on the earth and Clock - 2 is placed on a space station located at a height h above the earth's surface. Clock - 1 and Clock - 2 operate at time periods 4 s and 6 s respectively. Then the value of h is ______.

(consider the radius of earth RE = 6400 km and g on earth 10 m/s2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×