Advertisements
Advertisements
Question
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
Solution
Let, A = `[(1,5),(-1,2)]`
`=> A' = [(1,-1),(5,2)]`
`A + A' = [(1,5),(-1,2)] + [(1,-1),(5,2)]`
`= [(1 + 1, 5 - 1),(-1 + 5, 2 + 2)]`
`= [(2,4),(4,4)]`
`therefore 1/2 (A + A') = 1/2 [(2,4),(4,4)]`
`= [(1,2),(2,2)]`
and, A - A' = `[(1,5),(-1,2)] - [(1,-1),(5,2)]`
`= [(1 - 1, 5 + 1),(-1 -5, 2 - 2)]`
`= [(0,6),(-6,0)]`
`therefore 1/2 (A - A') = 1/2 [(0,6),(-6,0)] = [(0,3),(-3,0)]`
`A = 1/2 (A + A') + 1/2 (A - A')`
`= [(1,2),(2,2)] + [(0,3),(-3,0)] = A`
Symmetric matrices + Skew symmetric matrices
APPEARS IN
RELATED QUESTIONS
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If A= `((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Find `1/2` (A + A') and `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
If the matrix A is both symmetric and skew symmetric, then ______.
If a matrix A is both symmetric and skew-symmetric, then
If A and B are symmetric matrices, then ABA is
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
If A and B are matrices of the same order, then ABT − BAT is a
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
______ matrix is both symmetric and skew-symmetric matrix.
Sum of two skew-symmetric matrices is always ______ matrix.
If A is symmetric matrix, then B′AB is ______.
AA′ is always a symmetric matrix for any matrix A.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A and B are symmetric matrices of the same order, then ____________.
If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.
If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
If A = [aij] is a skew-symmetric matrix of order n, then ______.
Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?