Advertisements
Advertisements
Question
If A = 300 , verify that:
(i) sin 2A = `(2 tan A)/(1+tan^2A)`
Solution
A = 300
⇒ 2A = 2 × 300 = 600
(i) sin 2A = sin `60^0 = sqrt(3)/2`
`(2 tan A)/(1+tan^2A)= (2 tan 30^0)/(1+ tan ^2 30^0) = (2xx(1/sqrt(3)))/(1+(1/sqrt(3))^2`=`((2/sqrt(3)))/(1+1/3) =((2/sqrt(3)))/(4/3)=(2/sqrt(3)) xx 3/4=sqrt(3)/2`
∴ sin 2A = `(2 tan A)/(1+tan^2 A)`
APPEARS IN
RELATED QUESTIONS
Given 15 cot A = 8. Find sin A and sec A.
If cot θ = 2 find all the values of all T-ratios of θ .
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
If tan x = `1(1)/(3)`, find the value of : 4 sin2x - 3 cos2x + 2
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
From the given figure, find the values of cos C
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`