English

In the Arrhenius equation for a first order reaction, the values of ‘A’ of ‘Ea’ are 4 x 10^13 sec-1 and 98.6 kJ mol-1 respectively. - Chemistry

Advertisements
Advertisements

Question

In the Arrhenius equation for a first order reaction, the values of ‘A’ of ‘Ea’ are 4 x 1013 sec-1 and 98.6 kJ mol-1 respectively. At what temperature will its half life period be 10 minutes? 
[R = 8.314 J K-1 mol-1]

Numerical

Solution

Given: Frequency factor (A) = 4 x 1013 sec–1
Energy of activation (Ea) = 98.6 kJ mol–1
Half life period (t1/2) = 10 minutes = 10 x 60 = 600 sec.

`-> k=0.693/t_(1/2)`

`k=0.693/600=11.55xx10^-4 sec^-1`

`log_10k=log_10A-E_a/(2.303RT)`

`log_10 11.55 xx10^-4 =log_10 4xx10^13-(98.6xx10^3)/(2.303xx8.314xxT)`

`-2.937=13.602-(98.6xx10^3)/(2.303xx8.314xxT)`

`-2.937=13.602-(5149.632)/T`

`(5149.632)/T=13.602+2.937`

`T=(5149.632)/16.539`

T=311.36K or 38.36°

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Explain a graphical method to determine activation energy of a reaction.


(b) Rate constant ‘k’ of a reaction varies with temperature ‘T’ according to the equation:

`logk=logA-E_a/2.303R(1/T)`

Where Ea is the activation energy. When a graph is plotted for `logk Vs. 1/T` a straight line with a slope of −4250 K is obtained. Calculate ‘Ea’ for the reaction.(R = 8.314 JK−1 mol−1)


 

Consider the reaction

`3I_((aq))^-) +S_2O_8^(2-)->I_(3(aq))^-) + 2S_2O_4^(2-)`

At particular time t, `(d[SO_4^(2-)])/dt=2.2xx10^(-2)"M/s"`

What are the values of the following at the same time?

a. `-(d[I^-])/dt`

b. `-(d[S_2O_8^(2-)])/dt`

c. `-(d[I_3^-])/dt`

 

 

The rate constant of a first order reaction increases from 4 × 10−2 to 8 × 10−2 when the temperature changes from 27°C to 37°C. Calculate the energy of activation (Ea). (log 2 = 0.301, log 3 = 0.4771, log 4 = 0.6021)


The rate constant for the first-order decomposition of H2O2 is given by the following equation:

`logk=14.2-(1.0xx10^4)/TK`

Calculate Ea for this reaction and rate constant k if its half-life period be 200 minutes.

(Given: R = 8.314 JK–1 mol–1)


What will be the effect of temperature on rate constant?


The rate constant for the decomposition of N2O5 at various temperatures is given below:

T/°C 0 20 40 60 80
105 × k/s−1 0.0787 1.70 25.7 178 2140

Draw a graph between ln k and `1/"T"` and calculate the values of A and Ea. Predict the rate constant at 30º and 50ºC.


The decomposition of hydrocarbon follows the equation k = `(4.5 xx 10^11  "s"^-1) "e"^(-28000 "K"//"T")`

Calculate Ea.


The decomposition of A into product has value of k as 4.5 × 103 s−1 at 10°C and energy of activation 60 kJ mol−1. At what temperature would k be 1.5 × 104 s−1?


The rate constant of a first order reaction are 0.58 S-1 at 313 K and 0.045 S-1 at 293 K. What is the energy of activation for the reaction?


Define activation energy.


Calculate activation energy for a reaction of which rate constant becomes four times when temperature changes from 30 °C to 50 °C. (Given R = 8.314 JK−1 mol−1). 


What is the effect of adding a catalyst on Activation energy (Ea)


 Predict the main product of the following reactions:


Consider figure and mark the correct option.


Which of the following statements are in accordance with the Arrhenius equation?

(i) Rate of a reaction increases with increase in temperature.

(ii) Rate of a reaction increases with decrease in activation energy.

(iii) Rate constant decreases exponentially with increase in temperature.

(iv) Rate of reaction decreases with decrease in activation energy.


Oxygen is available in plenty in air yet fuels do not burn by themselves at room temperature. Explain.


Why in the redox titration of \[\ce{KMnO4}\] vs oxalic acid, we heat oxalic acid solution before starting the titration?


For an endothermic reaction energy of activation is Ea and enthalpy of reaction ΔH (both of there in KJ moI–1) minimum value of Ea will be


In respect of the eqn k = \[\ce{Ae^{{-E_a}/{RT}}}\] in chemical kinetics, which one of the following statement is correct?


The activation energy in a chemical reaction is defined as ______.


The activation energy in a chemical reaction is defined as ______.


Arrhenius equation can be represented graphically as follows:

The (i) intercept and (ii) slope of the graph are:


Explain how and why will the rate of reaction for a given reaction be affected when the temperature at which the reaction was taking place is decreased.


The activation energy of one of the reactions in a biochemical process is 532611 J mol–1. When the temperature falls from 310 K to 300 K, the change in rate constant observed is k300 = x × 10–3 k310. The value of x is ______.

[Given: ln 10 = 2.3, R = 8.3 J K–1 mol–1]


A first-order reaction is 50% complete in 30 minutes at 300 K and in 10 minutes at 320 K. Calculate activation energy (Ea) for the reaction. [R = 8.314 J K−1 mol−1]

[Given: log 2 = 0.3010, log 3 = 0.4771, log 4 = 0.6021]


What happens to the rate constant k and activation energy Ea as the temperature of a chemical reaction is increased? Justify.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×