English

In the Given Figure, Lm = Ln = 46°. Express X in Terms of A, B and C Where A, B, C Are Lengths of Lm, Mn and Nk Respectively. - Mathematics

Advertisements
Advertisements

Question

In the given figure, LM = LN = 46°. Express x in terms of aand c where abc are lengths of LM, MN and NK respectively.

Sum

Solution

Given: In the given figure  ∠ LMN = ∠ PNK= `46^o` 

TO EXPRESS: x in terms of abc where a, b, and c are the lengths of LM, MN and NK respectively.

Here we can see that. ∠ LMN = ∠ PNK= `46^o` It forms a pair of corresponding angles.

Hence, LM || PN

In 

\[∆ LMK\] and \[∆ PNK\]
\[\angle LMK = \angle PNK \left( \text{Corresponding angles} \right)\]
\[\angle LKM = \angle PKN \left( \text{Common} \right)\]
\[ \therefore ∆ LMK~ ∆ PNK \left( \text{AA Similarity} \right)\]
\[\frac{ML}{NP} = \frac{MK}{NK}\]
\[\frac{a}{x} = \frac{b + c}{c}\]
\[x = \frac{ac}{b + c}\]

Hence we got the result as \[x = \frac{ac}{b + c}\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Triangles - Exercise 7.9 [Page 130]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 7 Triangles
Exercise 7.9 | Q 22 | Page 130

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×