English

Integrate the function: cos3xelogsinx - Mathematics

Advertisements
Advertisements

Question

Integrate the function:

`cos^3 xe^(log sinx)`

Sum

Solution

Let `I = cos^3 x  e^(log sinx)   dx`

`= int cos^3 x sin x` dx

Substituting cos x = t,

⇒ - sin x dx = dt

⇒ sin x dx = - dt

Hence, `I = - int t^3   dt`

`= - t^4/4 + C`

`= - 1/4 cos^4 x + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.12 [Page 352]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.12 | Q 15 | Page 352

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the antiderivative of `(3sqrtx+1/sqrtx).`


Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`


If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).


Find an anti derivative (or integral) of the following function by the method of inspection.

sin 2x


Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`intx^2 (1 - 1/x^2)dx`


Find the following integrals:

`int(sqrtx - 1/sqrtx)^2 dx`


Find the following integrals:

`int (x^3 + 5x^2   -4)/x^2 dx`


Find the following integrals:

`int(2x - 3cos x + e^x) dx`


Find the following integrals:

`int (2 - 3 sinx)/(cos^2 x) dx.`


The anti derivative of `(sqrtx + 1/ sqrtx)` equals:


Integrate the function:

`1/(x - x^3)`


Integrate the function:

`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`


Integrate the function:

`1/(x^2(x^4 + 1)^(3/4))`


Integrate the function: 

`1/(x^(1/2) + x^(1/3))  ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))),  "put x" = t^6]`


Integrate the function:

`(5x)/((x+1)(x^2 +9))`


Integrate the function:

`(e^(5log x) -  e^(4log x))/(e^(3log x) - e^(2log x))`


Integrate the function:

`cos x/sqrt(4 - sin^2 x)`


Integrate the function:

`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`


Integrate the function:

`e^(3log x) (x^4 + 1)^(-1)`


Integrate the function:

`sqrt((1-sqrtx)/(1+sqrtx))`


Evaluate `int(x^3+5x^2 + 4x + 1)/x^2  dx`


Evaluate `int tan^(-1) sqrtx dx`


Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .


The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:


`sqrt((10x^9 + 10^x  log e^10)/(x^10 + 10^x)) dx` equals


`int (dx)/(sin^2x cos^2x) dx` equals


`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal


`int (dx)/sqrt(9x - 4x^2)` equal


`int e^x sec x(1 + tanx) dx` equals


`int sqrt(x^2 - 8x + 7)  dx` is equal to:-


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×