English

Solve the following problem.A spring ball of mass 0.5 kg is dropped from some height. On falling freely for 10 s, it explodes into two fragments of mass ratio 1:2. - Physics

Advertisements
Advertisements

Question

Solve the following problem.

A spring ball of mass 0.5 kg is dropped from some height. On falling freely for 10 s, it explodes into two fragments of mass ratio 1:2. The lighter fragment continues to travel downwards with a speed of 60 m/s. Calculate the kinetic energy supplied during the explosion.

Sum

Solution

m1 + m2 = 0.5 kg, m1 : m2 = 1 : 2,

m1 = `1/6` kg

∴ m2 = `1/3` kg

Initially, when the ball is falling freely for 10s,

v = u + at = 0 + 10(10)

∴ v = 100 m/s = u1 = u2

(m1 + m2)v = m1v1 + m2v2

∴ `0.5 xx 100 = 1/6(60) + 1/3 "v"_2`

∴ 50 = 10 + `1/3 "v"_2`

∴ 40 = `1/3 "v"_2`

∴ v2 = 120 m/s

∴ Δ K.E. = `1/2 "m"_1"v"_1^2 + 1/2"m"_2"v"_2^2 - 1/2 ("m"_1 + "m"_2)"u"^2`

∴ Δ K.E. = `1/2(1/6) xx 60^2 + 1/2 xx 1/3 xx (120)^2 - 1/2 xx 0.5 xx (100)^2`

= 300 + 2400 - 2500

∴ K.E. = 200 J

Kinetic energy supplied is 200 J.

shaalaa.com
Collisions
  Is there an error in this question or solution?
Chapter 4: Laws of Motion - Exercises [Page 77]

APPEARS IN

Balbharati Physics [English] 11 Standard Maharashtra State Board
Chapter 4 Laws of Motion
Exercises | Q 3. (xii) | Page 77

RELATED QUESTIONS

The rate of change of total momentum of a many-particle system is proportional to the ______ on the system.


In an inelastic collision of two bodies, the quantities which do not change after the collision are the ______ of the system of two bodies.


Answer carefully, with reason:

In an elastic collision of two billiard balls, is the total kinetic energy conserved during the short time of collision of the balls (i.e. when they are in contact)?


A molecule in a gas container hits a horizontal wall with speed 200 m s–1 and angle 30° with the normal, and rebounds with the same speed. Is momentum conserved in the collision? Is the collision elastic or inelastic?


The bob A of a pendulum released from 30° to the vertical hits another bob B of the same mass at rest on a table, as shown in the figure. How high does the bob A rise after the collision? Neglect the size of the bobs and assume the collision to be elastic.


Define coefficient of restitution.


Answer the following question.

Obtain its value for an elastic collision and a perfectly inelastic collision.


Answer the following question.

Discuss the following as special cases of elastic collisions and obtain their exact or approximate final velocities in terms of their initial velocities.

  1. Colliding bodies are identical.
  2. A very heavy object collides on a lighter object, initially at rest.
  3. A very light object collides on a comparatively much massive object, initially at rest.

Explain the characteristics of elastic and inelastic collision.


A ball is thrown vertically down from height of 80 m from the ground with an initial velocity 'v'. The ball hits the ground, loses `1/6`th of its total mechanical energy, and rebounds back to the same height. If the acceleration due to gravity is 10 ms-2, the value of 'v' is


A ball moving with velocity 5 m/s collides head on with another stationary ball of double mass. If the coefficient of restitution is 0.8, then their velocities (in m/s) after collision will be ____________.


A block of mass 'm' moving on a frictionless surface at speed 'v' collides elastically with a block of same mass, initially at rest. Now the first block moves at an angle 'θ' with its initial direction and has speed 'v1'. The speed of the second block after collision is ______.


A wooden block of mass 'M' moves with velocity 'v ' and collides with another block of mass '4M' which is at rest. After collision, the block of mass 'M' comes to rest. The coefficient of restitution will be ______.


A smooth sphere of mass 'M' moving with velocity 'u' directly collides elastically with another sphere of mass 'm' at rest. After collision, their final velocities are V' and V respectively. The value of V is given by ______.


During inelastic collision between two bodies, which of the following quantities always remain conserved?


Two identical ball bearings in contact with each other and resting on a frictionless table are hit head-on by another ball bearing of the same mass moving initially with a speed V as shown in figure.

If the collision is elastic, which of the following (Figure) is a possible result after collision?


A cricket ball of mass 150 g moving with a speed of 126 km/h hits at the middle of the bat, held firmly at its position by the batsman. The ball moves straight back to the bowler after hitting the bat. Assuming that collision between ball and bat is completely elastic and the two remain in contact for 0.001s, the force that the batsman had to apply to hold the bat firmly at its place would be ______.


In an elastic collision of two billiard balls, which of the following quantities remain conserved during the short time of collision of the balls (i.e., when they are in contact).

  1. Kinetic energy.
  2. Total linear momentum?

Give reason for your answer in each case.


A ball of mass m, moving with a speed 2v0, collides inelastically (e > 0) with an identical ball at rest. Show that for head-on collision, both the balls move forward.


A ball of mass m, moving with a speed 2v0, collides inelastically (e > 0) with an identical ball at rest. Show that for a general collision, the angle between the two velocities of scattered balls is less than 90°.


Consider a one-dimensional motion of a particle with total energy E. There are four regions A, B, C and D in which the relation between potential energy V, kinetic energy (K) and total energy E is as given below:

Region A : V > E
Region B : V < E
Region C : K > E
Region D : V > K

State with reason in each case whether a particle can be found in the given region or not.


The bob A of a pendulum released from horizontal to the vertical hits another bob B of the same mass at rest on a table as shown in figure.


If the length of the pendulum is 1 m, calculate

  1. the height to which bob A will rise after collision.
  2. the speed with which bob B starts moving. Neglect the size of the bobs and assume the collision to be elastic.

A ball of mass 10 kg moving with a velocity of 10`sqrt3` ms–1 along the X-axis, hits another ball of mass 20 kg which is at rest. After collision, the first ball comes to rest and the second one disintegrates into two equal pieces. One of the pieces starts moving along Y-axis at a speed of 10 m/s. The second piece starts moving at a speed of 20 m/s at an angle θ (degree) with respect to the X-axis.

The configuration of pieces after the collision is shown in the figure.

The value of θ to the nearest integer is ______.


A drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward, followed again by 5 steps forward and 3 steps backward, and so on. Each step is 1 m long and required 1 s to cover. How long the drunkard takes to fall in a pit 13 m away from the start?


A ball is thrown upwards from the foot of a tower. The ball crosses the top of tower twice after an interval of 4 seconds and the ball reaches ground after 8 seconds, then the height of tower is ______ m. (g = 10 m/s2)


An alpha-particle of mass m suffers 1-dimensional elastic collision with a nucleus at rest of unknown mass. It is scattered directly backwards losing, 64% of its initial kinetic energy. The mass of the nucleus is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×