Advertisements
Advertisements
Question
The principal value of the expression cos–1[cos (– 680°)] is ______.
Options
`(2pi)/9`
`(-2pi)/9`
`(34pi)/9`
`pi/9`
Solution
The principal value of the expression cos–1[cos (– 680°)] is `(2pi)/9`.
Explanation:
cos–1[cos (– 680°)] = cos–1[cos (720° – 40°)]
= cos–1[cos (– 40°)]
= cos–1[cos (40°)]
= 40°
= `(2pi)/9`.
APPEARS IN
RELATED QUESTIONS
The principal solution of `cos^-1(-1/2)` is :
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
cosec-1(-2)
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `tan^-1 (tan (9pi)/8)`.
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
The principal value branch of sec–1 is ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.