Advertisements
Advertisements
Question
Without using Pythagoras theorem show that points A(4, 4), B(3, 5) and C(−1, −1) are the vertices of a right angled triangle.
Solution
Given, A(4, 4), B(3, 5), C(−1, −1).
Slope of AB = `(y_2 - y_1)/(x_2 - x_1) = (5 - 4)/(3 - 4)` = −1
Slope of BC = `(-1 - 5)/(-1 - 3) = (-6)/(-4) = 3/2`
Slope of AC = `(-1 - 4)/(-1 - 4)` = 1
Slope of AB x slope of AC = −1 × 1 = −1
∴ side AB ⊥ side AC
Thus ΔABC is a right angled triangle right angled at A.
∴ The given points are the vertices of a right angled triangle.
APPEARS IN
RELATED QUESTIONS
Find the slope of the following line which passes through the points:
A(2, −1), B(4, 3)
Find the slope of the following line which passes through the points:
C(−2, 3), D(5, 7)
Find the slope of the following line which passes through the points:
G(7, 1), H(−3, 1)
A line makes intercepts 3 and 3 on the co-ordinate axes. Find the inclination of the line.
If points A(h, 0), B(0, k) and C(a, b) lie on a line then show that `"a"/"h" + "b"/"k"` = 1
Select the correct option from the given alternatives:
If A is (5, −3) and B is a point on the x-axis such that the slope of line AB is −2 then B ≡
Select the correct option from the given alternatives:
The angle between the line `sqrt(3)x - y - 2` = 0 and `x - sqrt(3)y + 1` = 0 is
Select the correct option from the given alternatives:
If kx + 2y − 1 = 0 and 6x − 4y + 2 = 0 are identical lines, then determine k
Answer the following question:
Find the equation of the line containing the point T(7, 3) and having inclination 90°.
Answer the following question:
Line through A(h, 3) and B(4, 1) intersect the line 7x − 9y − 19 = 0 at right angle Find the value of h
If P(r, c) is midpoint of a line segment between the axes then show that `x/"r" + y/"c"` = 2
If p is length of perpendicular from origin to the line whose intercepts on the axes are a and b, then show that `1/("p"^3) = 1/("a"^2) + 1/("b"^2)`
The normal boiling point of water is 100°C or 212°F and the freezing point of water is 0°C or 32°F. Find the value of C for 98.6°F
An object was launched from a place P in constant speed to hit a target. At the 15th second, it was 1400 m from the target, and at the 18th second 800 m away. Find the distance covered by it in 15 seconds
An object was launched from a place P in constant speed to hit a target. At the 15th second, it was 1400 m from the target, and at the 18th second 800 m away. Find time taken to hit the target
Find the equation of the straight lines passing through (8, 3) and having intercepts whose sum is 1
Show that the points (1, 3), (2, 1) and `(1/2, 4)` are collinear, by using concept of slope
Show that the points (1, 3), (2, 1) and `(1/2, 4)` are collinear, by using any other method
A straight line is passing through the point A(1, 2) with slope `5/12`. Find points on the line which are 13 units away from A
A 150 m long train is moving with constant velocity of 12.5 m/s. Find time taken to cross the bridge of length 850 m
A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time is shown in the following table
Weight (kg) | 2 | 4 | 5 | 8 |
Length (cm) | 3 | 4 | 4.5 | 6 |
Draw a graph showing the results.
A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time is shown in the following table
Weight (kg) | 2 | 4 | 5 | 8 |
Length (cm) | 3 | 4 | 4.5 | 6 |
How long will the spring be when 6 kilograms of weight on it?
In a shopping mall there is a hall of cuboid shape with dimension 800 × 800 × 720 units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the figure. Find the minimum total length of the escalator
In a shopping mall there is a hall of cuboid shape with dimension 800 × 800 × 720 units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the figure. Find the heights at which the escalator changes its direction
In a shopping mall there is a hall of cuboid shape with dimension 800 × 800 × 720 units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the figure. Find the slopes of the escalator at the turning points
Choose the correct alternative:
Straight line joining the points (2, 3) and (−1, 4) passes through the point (α, β) if
Choose the correct alternative:
The y-intercept of the straight line passing through (1, 3) and perpendicular to 2x − 3y + 1 = 0 is
The distance of the origin from the centroid of the triangle whose two sides have the equations. x – 2y + 1 = 0 and 2x – y – 1 = 0 and whose orthocenter is `(7/3. 7/3)` is ______.
A point on the straight line, 3x + 5y = 15 which is equidistant from the coordinate, axes will lie only in ______.
The locus of the midpoint of the portion intercept between the axes by the line xcosa + ysina = P where P is a constant is ______.
Find the coordinates of the point which divides the line segment joining the points (1, –2, 3) and (3, 4, –5) internally in the ratio 2 : 3.
The equation of the line passing through the point (–3, 1) and bisecting the angle between co-ordinate axes is ______.