English

NCERT Exemplar solutions for Physics [English] Class 11 chapter 8 - Gravitation [Latest edition]

Advertisements

Chapters

NCERT Exemplar solutions for Physics [English] Class 11 chapter 8 - Gravitation - Shaalaa.com
Advertisements

Solutions for Chapter 8: Gravitation

Below listed, you can find solutions for Chapter 8 of CBSE NCERT Exemplar for Physics [English] Class 11.


Exercises
Exercises [Pages 57 - 64]

NCERT Exemplar solutions for Physics [English] Class 11 8 Gravitation Exercises [Pages 57 - 64]

MCQ I

Exercises | Q 8.1 | Page 57

The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration due to gravity ______.

  • will be directed towards the centre but not the same everywhere.

  • will have the same value everywhere but not directed towards the centre.

  • will be same everywhere in magnitude directed towards the centre.

  • cannot be zero at any point.

Exercises | Q 8.2 | Page 57

As observed from earth, the sun appears to move in an approximate circular orbit. For the motion of another planet like mercury as observed from earth, this would ______.

  • be similarly true.

  • not be true because the force between earth and mercury is not inverse square law.

  • not be true because the major gravitational force on mercury is due to sun.

  • not be true because mercury is influenced by forces other than gravitational forces.

Exercises | Q 8.3 | Page 58

Different points in earth are at slightly different distances from the sun and hence experience different forces due to gravitation. For a rigid body, we know that if various forces act at various points in it, the resultant motion is as if a net force acts on the c.m. (centre of mass) causing translation and a net torque at the c.m. causing rotation around an axis through the c.m. For the earth-sun system (approximating the earth as a uniform density sphere).

  • the torque is zero.

  • the torque causes the earth to spin.

  • the rigid body result is not applicable since the earth is not even approximately a rigid body.

  • the torque causes the earth to move around the sun.

Exercises | Q 8.4 | Page 58

Satellites orbiting the earth have finite life and sometimes debris of satellites fall to the earth. This is because ______.

  • the solar cells and batteries in satellites run out.

  • the laws of gravitation predict a trajectory spiralling inwards.

  • of viscous forces causing the speed of satellite and hence height to gradually decrease.

  • of collisions with other satellites.

Exercises | Q 8.5 | Page 58

Both earth and moon are subject to the gravitational force of the sun. As observed from the sun, the orbit of the moon ______.

  • will be elliptical.

  • will not be strictly elliptical because the total gravitational force on it is not central.

  • is not elliptical but will necessarily be a closed curve.

  • deviates considerably from being elliptical due to influence of planets other than earth.

Exercises | Q 8.6 | Page 58

In our solar system, the inter-planetary region has chunks of matter (much smaller in size compared to planets) called asteroids. They ______.

  • will not move around the sun since they have very small masses compared to sun.

  • will move in an irregular way because of their small masses and will drift away into outer space.

  • will move around the sun in closed orbits but not obey Kepler’s laws.

  • will move in orbits like planets and obey Kepler’s laws.

Exercises | Q 8.7 | Page 59

Choose the wrong option.

  • Inertial mass is a measure of difficulty of accelerating a body by an external force whereas the gravitational mass is relevant in determining the gravitational force on it by an external mass.

  • That the gravitational mass and inertial mass are equal is an experimental result.

  • That the acceleration due to gravity on earth is the same for all bodies is due to the equality of gravitational mass and inertial mass.

  • Gravitational mass of a particle like proton can depend on the presence of neighouring heavy objects but the inertial mass cannot.

Exercises | Q 8.8 | Page 59

Particles of masses 2M, m and M are respectively at points A, B and C with AB = ½ (BC). m is much-much smaller than M and at time t = 0, they are all at rest (Figure). At subsequent times before any collision takes place ______.

  • m will remain at rest.

  • m will move towards M.

  • m will move towards 2M.

  • m will have oscillatory motion.

MCQ II

Exercises | Q 8.9 | Page 59

Which of the following options are correct?

  1. Acceleration due to gravity decreases with increasing altitude.
  2. Acceleration due to gravity increases with increasing depth (assume the earth to be a sphere of uniform density).
  3. Acceleration due to gravity increases with increasing latitude.
  4. Acceleration due to gravity is independent of the mass of the earth.
Exercises | Q 8.10 | Page 59

If the law of gravitation, instead of being inverse-square law, becomes an inverse-cube law- ______.

  1. planets will not have elliptic orbits.
  2. circular orbits of planets is not possible.
  3. projectile motion of a stone thrown by hand on the surface of the earth will be approximately parabolic.
  4. there will be no gravitational force inside a spherical shell of uniform density.
Exercises | Q 8.11 | Page 60

If the mass of sun were ten times smaller and gravitational constant G were ten times larger in magnitudes ______.

  1. walking on ground would became more difficult.
  2. the acceleration due to gravity on earth will not change.
  3. raindrops will fall much faster.
  4. airplanes will have to travel much faster.
Exercises | Q 8.12 | Page 60

If the sun and the planets carried huge amounts of opposite charges ______.

  1. all three of Kepler’s laws would still be valid.
  2. only the third law will be valid.
  3. the second law will not change.
  4. the first law will still be valid.
Exercises | Q 8.13 | Page 60

There have been suggestions that the value of the gravitational constant G becomes smaller when considered over very large time period (in billions of years) in the future. If that happens, for our earth ______.

  1. nothing will change.
  2. we will become hotter after billions of years.
  3. we will be going around but not strictly in closed orbits.
  4. after sufficiently long time we will leave the solar system.
Exercises | Q 8.14 | Page 60

Supposing Newton’s law of gravitation for gravitation forces F1 and F2 between two masses m1 and m2 at positions r1 and r2 read F1 = – F2 = `- r_12/r_12^3 GM_0^2 ((m_1m_2)/M_0^2)^n` where M0 is a constant of dimension of mass r12 = r1 – r2 and n is a number. in such a case.

  1. the acceleration due to gravity on earth will be different for different objects.
  2. none of the three laws of Kepler will be valid.
  3. only the third law will become invalid.
  4. for n negative, an object lighter than water will sink in water.
Exercises | Q 8.15 | Page 60

Which of the following are true?

  1. A polar satellite goes around the earth’s pole in north- south direction.
  2. A geostationary satellite goes around the earth in east-west direction.
  3. A geostationary satellite goes around the earth in west-east direction.
  4. A polar satellite goes around the earth in east-west direction.
Exercises | Q 8..16 | Page 61

The centre of mass of an extended body on the surface of the earth and its centre of gravity ______.

  1. are always at the same point for any size of the body.
  2. are always at the same point only for spherical bodies.
  3. can never be at the same point.
  4. is close to each other for objects, say of sizes less than 100 m.
  5. both can change if the object is taken deep inside the earth.

VSA

Exercises | Q 8.17 | Page 61

Molecules in air in the atmosphere are attracted by gravitational force of the earth. Explain why all of them do not fall into the earth just like an apple falling from a tree.

Exercises | Q 8.18 | Page 61

Give one example each of central force and non-central force.

Exercises | Q 8.19 | Page 61

Draw areal velocity versus time graph for mars.

Exercises | Q 8.20 | Page 61

What is the direction of areal velocity of the earth around the sun?

Exercises | Q 8.21 | Page 61

How is the gravitational force between two point masses affected when they are dipped in water keeping the separation between them the same?

Exercises | Q 8.22 | Page 61

Is it possibe for a body to have inertia but no weight?

Exercises | Q 8.23 | Page 61

We can shield a charge from electric fields by putting it inside a hollow conductor. Can we shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means?

Exercises | Q 8.24 | Page 61

An astronaut inside a small spaceship orbiting around the earth cannot detect gravity. If the space station orbiting around the earth has a large size, can he hope to detect gravity?

Exercises | Q 8.25 | Page 61

The gravitational force between a hollow spherical shell (of radius R and uniform density) and a point mass is F. Show the nature of F vs r graph where r is the distance of the point from the centre of the hollow spherical shell of uniform density.

Exercises | Q 8.26 | Page 61

Out of aphelion and perihelion, where is the speed of the earth more and why?

Exercises | Q 8.27 (a) | Page 61

What is the angle between the equatorial plane and the orbital plane of polar satellite?

Exercises | Q 8.27 (b) | Page 61

What is the angle between the equatorial plane and the orbital plane of geostationary satellite?

SA

Exercises | Q 8.28 | Page 62

Mean solar day is the time interval between two successive noon when sun passes through zenith point (meridian). Sidereal day is the time interval between two successive transit of a distant star through the zenith point (meridian). By drawing appropriate diagram showing earth’s spin and orbital motion, show that mean solar day is four minutes longer than the sidereal day. In other words, distant stars would rise 4 minutes early every successive day.

Exercises | Q 8.29 | Page 62

Two identical heavy spheres are separated by a distance 10 times their radius. Will an object placed at the mid point of the line joining their centres be in stable equilibrium or unstable equilibrium? Give reason for your answer.

Exercises | Q 8.30 | Page 62

Show the nature of the following graph for a satellite orbiting the earth. 

  1. KE vs orbital radius R
  2. PE vs orbital radius R
  3. TE vs orbital radius R.
Exercises | Q 8.31 | Page 62

Shown are several curves (Figure). Explain with reason, which ones amongst them can be possible trajectories traced by a projectile (neglect air friction).

Exercises | Q 8.32 | Page 63

An object of mass m is raised from the surface of the earth to a height equal to the radius of the earth, that is, taken from a distance R to 2R from the centre of the earth. What is the gain in its potential energy?

Exercises | Q 8.33 | Page 63

A mass m is placed at P a distance h along the normal through the centre O of a thin circular ring of mass M and radius r (Figure).


If the mass is removed further away such that OP becomes 2h, by what factor the force of gravitation will decrease, if h=r?

LA

Exercises | Q 8.34 | Page 63

A star like the sun has several bodies moving around it at different distances. Consider that all of them are moving in circular orbits. Let r be the distance of the body from the centre of the star and let its linear velocity be v, angular velocity ω, kinetic energy K, gravitational potential energy U, total energy E and angular momentum l. As the radius r of the orbit increases, determine which of the above quantities increase and which ones decrease.

Exercises | Q 8.35 | Page 63

Six point masses of mass m each are at the vertices of a regular hexagon of side l. Calculate the force on any of the masses.

Exercises | Q 8.36 | Page 63

A satellite is to be placed in equatorial geostationary orbit around earth for communication.

  1. Calculate height of such a satellite.
  2. Find out the minimum number of satellites that are needed to cover entire earth so that at least one satellites is visible from any point on the equator.

[M = 6 × 1024 kg, R = 6400 km, T = 24 h, G = 6.67 × 10–11 SI units]

Exercises | Q 8.37 | Page 64

Earth’s orbit is an ellipse with eccentricity 0.0167. Thus, earth’s distance from the sun and speed as it moves around the sun varies from day to day. This means that the length of the solar day is not constant through the year. Assume that earth’s spin axis is normal to its orbital plane and find out the length of the shortest and the longest day. A day should be taken from noon to noon. Does this explain variation of length of the day during the year?

Exercises | Q 8.38 | Page 64

A satellite is in an elliptic orbit around the earth with aphelion of 6R and perihelion of 2 R where R= 6400 km is the radius of the earth. Find eccentricity of the orbit. Find the velocity of the satellite at apogee and perigee. What should be done if this satellite has to be transferred to a circular orbit of radius 6R ?

[G = 6.67 × 10–11 SI units and M = 6 × 1024 kg]

Solutions for 8: Gravitation

Exercises
NCERT Exemplar solutions for Physics [English] Class 11 chapter 8 - Gravitation - Shaalaa.com

NCERT Exemplar solutions for Physics [English] Class 11 chapter 8 - Gravitation

Shaalaa.com has the CBSE Mathematics Physics [English] Class 11 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT Exemplar solutions for Mathematics Physics [English] Class 11 CBSE 8 (Gravitation) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT Exemplar textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Physics [English] Class 11 chapter 8 Gravitation are Kepler’s Laws, Newton’s Universal Law of Gravitation, The Gravitational Constant, Acceleration Due to Gravity of the Earth, Acceleration Due to Gravity Below and Above the Earth's Surface, Acceleration Due to Gravity and Its Variation with Altitude and Depth, Escape Speed, Earth Satellites, Energy of an Orbiting Satellite, Geostationary and Polar Satellites, Weightlessness, Escape Velocity, Orbital Velocity of a Satellite, Gravitational Potential Energy.

Using NCERT Exemplar Physics [English] Class 11 solutions Gravitation exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Exemplar Solutions are essential questions that can be asked in the final exam. Maximum CBSE Physics [English] Class 11 students prefer NCERT Exemplar Textbook Solutions to score more in exams.

Get the free view of Chapter 8, Gravitation Physics [English] Class 11 additional questions for Mathematics Physics [English] Class 11 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×