हिंदी

A First-order Reaction is 50% Completed in 40 Minutes at 300 K and in 20 Minutes at 320 K. Calculate the Activation Energy of the Reaction. - Chemistry

Advertisements
Advertisements

प्रश्न

A first-order reaction is 50% completed in 40 minutes at 300 K and in 20 minutes at 320 K. Calculate the activation energy of the reaction. (Given : log 2 = 0·3010, log 4 = 0·6021, R = 8·314 JK–1 mol–1)

संख्यात्मक

उत्तर

Given

t1/2 = 40 min at temperature (T1) = 300 K

t1/2 = 20 min at temperature (T2) = 320 K

t1/2 = 40 min, t1/2 = 20 min

`k_1 = 0.693/40`

`k_2 = 0.693/20`

According to Arrhenius equation

`log (k_2/k_1) = "E"_"a"/(2.303 " R") [1/"T"_1 - 1/"T"_2]`

`= "E"_"a"/(2.303 " R") [("T"_2 - "T"_1)/("T"_1"T"_2)]`

`log ((0.0693/20)/(0.0693/40)) = "E"_"a"/(2.303 xx 8.314) [(320 - 300)/(300 xx 320)]`

`therefore 0.3010 = "E"_"a"/19.147 [0.0002083]`

Ea = 27664 J/mol

Ea = 27.7 kJ/mol

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The rate constant of a first order reaction increases from 2 × 10−2 to 4 × 10−2 when the temperature changes from 300 K to 310 K. Calculate the energy of activation (Ea).

(log 2 = 0.301, log 3 = 0.4771, log 4 = 0.6021)


What will be the effect of temperature on rate constant?


The activation energy for the reaction \[\ce{2 HI_{(g)} -> H2_{(g)} + I2_{(g)}}\] is 209.5 kJ mol−1 at 581K. Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?


The decomposition of hydrocarbon follows the equation k = `(4.5 xx 10^11  "s"^-1) "e"^(-28000 "K"//"T")`

Calculate Ea.


 Write a condition under which a bimolecular reaction is kinetically first order. Give an example of  such a reaction. (Given : log2 = 0.3010,log 3 = 0.4771, log5 = 0.6990).


Activation energy of a chemical reaction can be determined by ______.


Consider figure and mark the correct option.


Which of the following statements are in accordance with the Arrhenius equation?

(i) Rate of a reaction increases with increase in temperature.

(ii) Rate of a reaction increases with decrease in activation energy.

(iii) Rate constant decreases exponentially with increase in temperature.

(iv) Rate of reaction decreases with decrease in activation energy.


Thermodynamic feasibility of the reaction alone cannot decide the rate of the reaction. Explain with the help of one example.


Match the statements given in Column I and Column II

  Column I Column I
(i) Catalyst alters the rate of reaction (a) cannot be fraction or zero
(ii) Molecularity (b) proper orientation is not there always
(iii) Second half life of first order reaction (c) by lowering the activation energy
(iv) `e^((-E_a)/(RT)` (d) is same as the first
(v) Energetically favourable reactions (e) total probability is one are sometimes slow (e) total probability is one
(vi) Area under the Maxwell Boltzman curve is constant (f) refers to the fraction of molecules with energy equal to or greater than activation energy

What happens to most probable kinetic energy and the energy of activation with increase in temperature?


Total number of vibrational degrees of freedom present in CO2 molecule is


The activation energy in a chemical reaction is defined as ______.


The slope of Arrhenius Plot `("In"  "k"  "v"//"s" 1/"T")` of first-order reaction is −5 × 103 K. The value of Ea of the reaction is. Choose the correct option for your answer. [Given R = 8.314 JK−1mol−1]


Arrhenius equation can be represented graphically as follows:

The (i) intercept and (ii) slope of the graph are:


Explain how and why will the rate of reaction for a given reaction be affected when the temperature at which the reaction was taking place is decreased.


The equation k = `(6.5 xx 10^12 "s"^(-1))"e"^(- 26000 " K"//"T")` is followed for the decomposition of compound A. The activation energy for the reaction is ______ kJ mol-1. (Nearest integer) (Given: R = 8.314 JK-1 mol-1)


A first-order reaction is 50% complete in 30 minutes at 300 K and in 10 minutes at 320 K. Calculate activation energy (Ea) for the reaction. [R = 8.314 J K−1 mol−1]

[Given: log 2 = 0.3010, log 3 = 0.4771, log 4 = 0.6021]


What happens to the rate constant k and activation energy Ea as the temperature of a chemical reaction is increased? Justify.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×