Advertisements
Advertisements
प्रश्न
In a triangle ABC, BC = AC and ∠ A = 35°. Which is the smallest side of the triangle?
उत्तर
In ΔABC,
BC = AC ...(given)
⇒ ∠A = ∠B = 35°
Let ∠C = x°
In ΔABC,
∠A + ∠B + ∠C = 180°
35° + 35° + x = 180°
70° + x° = 180°
x° = 180° - 70°
x° = 110°
∠C = x° = 110°
Hence, ∠A = ∠B = 35° and ∠C = 110°
In ΔABC, the greatest angle is ∠C.
As the smallest angles are ∠A and ∠B,
smallest sides are BC and AC.
APPEARS IN
संबंधित प्रश्न
Show that in a right angled triangle, the hypotenuse is the longest side.
In the given figure sides AB and AC of ΔABC are extended to points P and Q respectively. Also, ∠PBC < ∠QCB. Show that AC > AB.
In the given figure, PR > PQ and PS bisects ∠QPR. Prove that ∠PSR >∠PSQ.
In a triangle PQR; QR = PR and ∠P = 36o. Which is the largest side of the triangle?
D is a point in side BC of triangle ABC. If AD > AC, show that AB > AC.
Arrange the sides of the following triangles in an ascending order:
ΔDEF, ∠D = 38°, ∠E = 58°.
D is a point on the side of the BC of ΔABC. Prove that the perimeter of ΔABC is greater than twice of AD.
ABCD is a trapezium. Prove that:
CD + DA + AB + BC > 2AC.
In the given figure, ∠QPR = 50° and ∠PQR = 60°. Show that : PN < RN
In ΔPQR is a triangle and S is any point in its interior. Prove that SQ + SR < PQ + PR.