English

Disintegration rate of a sample is 1010 per hour at 20 hours from the start. It reduces to 6.3 x 109 per hour after 30 hours. - Physics

Advertisements
Advertisements

Question

Disintegration rate of a sample is 1010 per hour at 20 hours from the start. It reduces to 6.3 x 109 per hour after 30 hours. Calculate its half-life and the initial number of radioactive atoms in the sample.

Numerical

Solution

Data: A(t1) = 1010 per hour, where t1 = 20 h, 
A(t1) = 6.3 × 1010 per hour, where t2 = 30 h
A(t) = A0e-λt  ∴ A(t1) = `"A"_0"e"^(-λ"t"_1)` and
A(t2) = `"A"_0"e"^(-λ"t"_2)`

∴ `("A"("t"_1))/("A"("t"_2)) = ("e"^(-lambda"t"_1)/"e"^(-lambda"t"_2)) = "e"^(lambda("t"_2 - "t"_1))`

∴ `10^10/(6.3 xx 10^9) = "e"^(lambda(30 - 20)) = "e"^(10lambda)`

∴ 1.587 = e10λ

∴ 10λ = 2.303 log10(1.587)

∴ λ = (0.2303)(0.2007) = 0.04622 per hour

The half life of the material, T1/2 = `0.693/lambda = 0.693/0.04622`

= 14.99 hours

Now, `"A"_0 = "A"("t"_1)"e"^(lambda"t"_1) = 10^10"e"^((0.04622)(20))`

= `10^10 "e"^0.9244` 

Let x = `"e"^0.9244`

∴ 2.303 log10x = 0.9244

∴ log10x = `0.9244/2.303 = 0.4014`

∴ x = antilog 0.4014 = 2.52

∴ A0 = 2.52 x 1010 per hour

Now A0 = N0λ

∴ `"N"_0 = "A"_0/lambda = (2.52 xx 10^10)/0.04622`

= 5.452 × 1011

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Structure of Atoms and Nuclei - Exercises [Page 343]

APPEARS IN

Balbharati Physics [English] 12 Standard HSC Maharashtra State Board
Chapter 15 Structure of Atoms and Nuclei
Exercises | Q 19 | Page 343

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The decay constant of radioactive substance is 4.33 x 10-4 per year. Calculate its half life period.

 


State the law of radioactive decay.


Derive the mathematical expression for law of radioactive decay for a sample of a radioactive nucleus


How is the mean life of a given radioactive nucleus related to the decay constant?


Obtain the relation between the decay constant and half life of a radioactive sample.


Why is it found experimentally difficult to detect neutrinos in nuclear β-decay?


Obtain the amount of `""_27^60"Co"` necessary to provide a radioactive source of 8.0 mCi strength. The half-life of `""_27^60"Co"` is 5.3 years.


The radionuclide 11C decays according to 

\[\ce{^11_6C -> ^11_5B + e+ + \text{v}}\] : T1/2 = 20.3 min

The maximum energy of the emitted positron is 0.960 MeV.

Given the mass values: `"m"(""_6^11"C") = 11.011434 u and "m"(""_6^11"B") = 11.009305 "u"`

Calculate Q and compare it with the maximum energy of the positron emitted.


The Q value of a nuclear reaction \[\ce{A + b → C + d}\] is defined by

Q = [ mA+ mb− mC− md]cwhere the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.

\[\ce{^1_1H + ^3_1H -> ^2_1H + ^2_1H}\]

Atomic masses are given to be

`"m"(""_1^2"H")` = 2.014102 u

`"m"(""_1^3"H")` = 3.016049 u

`"m"(""_6^12"C")` = 12.000000 u

`"m"(""_10^20"Ne")` = 19.992439 u


A source contains two phosphorous radio nuclides `""_15^32"P"` (T1/2 = 14.3d) and `""_15^33"P"` (T1/2 = 25.3d). Initially, 10% of the decays come from `""_15^33"P"`. How long one must wait until 90% do so?


Under certain circumstances, a nucleus can decay by emitting a particle more massive than an α-particle. Consider the following decay processes:

\[\ce{^223_88Ra -> ^209_82Pb + ^14_6C}\]

\[\ce{^223_88 Ra -> ^219_86 Rn + ^4_2He}\]

Calculate the Q-values for these decays and determine that both are energetically allowed.


(a) Derive the relation between the decay constant and half life of a radioactive substance. 
(b) A radioactive element reduces to 25% of its initial mass in 1000 years. Find its half life.


Define 'activity' of a radioactive substance ?


Two different radioactive elements with half lives T1 and T2 have N1 and N2 undecayed atoms respectively present at a given instant. Derive an expression for the ratio of their activities at this instant in terms of N1 and N2 ?


In a given sample, two radioisotopes, A and B, are initially present in the ration of 1 : 4. The half lives of A and B are respectively 100 years and 50 years. Find the time after which the amounts of A and B become equal.


In a radioactive decay, neither the atomic number nor the mass number changes. Which of the following particles is emitted in the decay?


A freshly prepared radioactive source of half-life 2 h emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is


Lithium (Z = 3) has two stable isotopes 6Li and 7Li. When neutrons are bombarded on lithium sample, electrons and α-particles are ejected. Write down the nuclear process taking place.


The masses of 11C and 11B are respectively 11.0114 u and 11.0093 u. Find the maximum energy a positron can have in the β*-decay of 11C to 11B.

(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)


The decay constant of `""_80^197`Hg (electron capture to `""_79^197`Au) is 1.8 × 10−4 S−1. (a) What is the half-life? (b) What is the average-life? (c) How much time will it take to convert 25% of this isotope of mercury into gold?


57Co decays to 57Fe by β+- emission. The resulting 57Fe is in its excited state and comes to the ground state by emitting γ-rays. The half-life of β+- decay is 270 days and that of the γ-emissions is 10−8 s. A sample of 57Co gives 5.0 × 109 gamma rays per second. How much time will elapse before the emission rate of gamma rays drops to 2.5 × 109per second?


The half-life of 40K is 1.30 × 109 y. A sample of 1.00 g of pure KCI gives 160 counts s−1. Calculate the relative abundance of 40K (fraction of 40K present) in natural potassium.


Obtain a relation between the half-life of a radioactive substance and decay constant (λ).


A radioactive substance disintegrates into two types of daughter nuclei, one type with disintegration constant λ1 and the other type with disintegration constant λ2 . Determine the half-life of the radioactive substance.


The isotope \[\ce{^57Co}\] decays by electron capture to \[\ce{^57Fe}\] with a half-life of 272 d. The \[\ce{^57Fe}\] nucleus is produced in an excited state, and it almost instantaneously emits gamma rays.
(a) Find the mean lifetime and decay constant for 57Co.
(b) If the activity of a radiation source 57Co is 2.0 µCi now, how many 57Co nuclei does the source contain?

c) What will be the activity after one year?


A source contains two species of phosphorous nuclei, \[\ce{_15^32P}\] (T1/2 = 14.3 d) and \[\ce{_15^33P}\] (T1/2 = 25.3 d). At time t = 0, 90% of the decays are from \[\ce{_15^32P}\]. How much time has to elapse for only 15% of the decays to be from \[\ce{_15^32P}\]?


Before the year 1900 the activity per unit mass of atmospheric carbon due to the presence of 14C averaged about 0.255 Bq per gram of carbon.
(a) What fraction of carbon atoms were 14C?
(b) An archaeological specimen containing 500 mg of carbon, shows 174 decays in one hour. What is the age of the specimen, assuming that its activity per unit mass of carbon when the specimen died was equal to the average value of the air? The half-life of 14C is 5730 years.


A radioactive element disintegrates for an interval of time equal to its mean lifetime. The fraction that has disintegrated is ______


Which one of the following nuclei has shorter meant life?

 


The half-life of a radioactive sample undergoing `alpha` - decay is 1.4 x 1017 s. If the number of nuclei in the sample is 2.0 x 1021, the activity of the sample is nearly ____________.


After 1 hour, `(1/8)^"th"` of the initial mass of a certain radioactive isotope remains undecayed. The half-life of the isotopes is ______.


What percentage of radioactive substance is left after five half-lives?


The half-life of a radioactive nuclide is 20 hrs. The fraction of the original activity that will remain after 40 hrs is ______.


The half-life of the radioactive substance is 40 days. The substance will disintegrate completely in


When a nucleus in an atom undergoes a radioactive decay, the electronic energy levels of the atom ______.


The variation of decay rate of two radioactive samples A and B with time is shown in figure.

Which of the following statements are true?

  1. Decay constant of A is greater than that of B, hence A always decays faster than B.
  2. Decay constant of B is greater than that of A but its decay rate is always smaller than that of A.
  3. Decay constant of A is greater than that of B but it does not always decay faster than B.
  4. Decay constant of B is smaller than that of A but still its decay rate becomes equal to that of A at a later instant.

Draw a graph showing the variation of decay rate with number of active nuclei.


Consider a radioactive nucleus A which decays to a stable nucleus C through the following sequence:

A→B→C

Here B is an intermediate nuclei which is also radioactive. Considering that there are N0 atoms of A initially, plot the graph showing the variation of number of atoms of A and B versus time.


Sometimes a radioactive nucleus decays into a nucleus which itself is radioactive. An example is :

\[\ce{^38Sulphur ->[half-life][= 2.48h] ^{38}Cl ->[half-life][= 0.62h] ^38Air (stable)}\]

Assume that we start with 1000 38S nuclei at time t = 0. The number of 38Cl is of count zero at t = 0 and will again be zero at t = ∞ . At what value of t, would the number of counts be a maximum?


What is the half-life period of a radioactive material if its activity drops to 1/16th of its initial value of 30 years?


The half-life of `""_82^210Pb` is 22.3 y. How long will it take for its activity 0 30% of the initial activity?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×