Advertisements
Advertisements
Question
Find the integrals of the function:
tan4x
Solution
Let `I = int tan^4 x dx = int (sec^2 x - 1)^2 dx`
`= (sec^4 x - 2 sec^2 x + 1) dx`
`= int sec^4 x dx - 2 int sec^2 x dx + int 1 dx`
`= int sec^4 x dx - 2 tan x + x + C_1`
⇒ `I = I_1 - 2 tan x + x + C_1` ...(i)
Where `I_1 = intsec^4 x dx`
Now, `I_1 = int sec^4 x dx = int sec^2 x * sec^2 x dx`
`= int (1 + tan^2 x) sec^2 x dx.`
Put tan x = t
⇒ sec2 x dx = dt
∴ `I_1 = int (1 + t^2) dt = t = t^3/3 + C_2`
`= tan x + 1/3 tan^3 x + C_2` .....(ii)
From (i) and (iii), we have,
`I = tan x + 1/3 tan^3 x + C_2 - 2 tan x + x + C_1`
`= 1/3 tan^3 x - tan x + x + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
sin−1 (cos x)
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ (log "x")^2 d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is