Advertisements
Advertisements
Question
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Solution
Let `I = int 1/ (sqrt(sin^3 x sin (x + alpha))) dx`
`= int sqrt ((sinx)/(sin^4 x sin (x + alpha))) dx`
`= int 1/ (sin^2 x) sqrt((sinx)/ (sin (x + alpha))) dx`
Let `(sin (x + alpha))/ sinx = t`
⇒ `(sin x cos (x + alpha) - cos x sin (x + alpha))/sin^2 x dx = dt`
⇒ `(sin [x - (x + alpha)])/sin^2 x dx = dt`
⇒ `-(sin alpha)/sin^2 x dx = dt`
∴ `I = int - 1/ (sin alpha)* 1/sqrtt dt`
`= -1/ (sin alpha) int t^(-1/2) dt`
`= -1/ (sin alpha) t^(1/2)/(1/2) + C`
`= (-2)/ (sin alpha) sqrtt + C`
`= (-2)/(sin alpha) sqrt (sin(x + alpha)/sinx) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`f x^2 e^(x^3) dx` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
`d/(dx)x^(logx)` = ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.