Advertisements
Advertisements
Question
मान लीजिए कि समुच्चय {(1, 2, 3, 4)} में, R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)} द्वारा परिभाषित संबंध R है। निम्नलिखित में से सही उत्तर चुनिए।
Options
R स्वतुल्य तथा सममित है किंतु संक्रामक नहीं है।
R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
R सममित तथा संक्रामक है किंतु स्वतुल्य नहीं है।
R एक तुल्यता संबंध है।
Solution 1
R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
स्पष्टीकरण:
R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}
यहाँ (a, a) ∈ R, सभी अवयवों a ∈ {1, 2, 3, 4} के लिए।
∴ R स्वतुल्य है।
यहाँ (1, 2) ∈ R लेकिन (2, 1) ∉ R, इसलिए R सममित नहीं है।
अब, यहाँ (a, b) और (b, c) ∈ R ⇒ (a, c) ∈ R सभी अवयवों a, b, c ∈ {1, 2, 3, 4}
इसलिए R संक्रामक है।
अंत:, R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
अंत:, विकल्प R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है। सही है।
Solution 2
R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
स्पष्टीकरण:
⇒ R स्वतुल्य है क्योंकि (1, 1), (2, 2), (3, 3), (4, 4) ∈ R सभी 1, 2, 3, 4 ∈ {1, 2, 3, 4}
⇒ R संक्रामक है क्योंकि (1, 3) ∈ R और (3, 2) ∈ R
(1,2) ∈ R सभी 1, 2, 3 के लिए ∈ {1, 2, 3, 4}
APPEARS IN
RELATED QUESTIONS
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
समुच्चय A = {1, 2, 3, ..., 13, 14} में संबंध R, इस प्रकार परिभाषित है कि
R = {(x, y) : 3x - y = 0}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
समुच्चय A = {1, 2, 3, 4, 5, 6} में R = {x, y) : y भाज्य है x से) द्वारा परिभाषित संबंध R है।
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
समस्त पूर्णांकों के समुच्चय Z में R = {(x, y) : x - y एक पूर्णांक है} द्वारा परिभाषित संबंध R.
सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में R = {(a, b) : a ≤ b2}, द्वारा परिभाषित संबंध R, न तो स्वतुल्य है, न सममित है और न ही संक्रामक है।
जाँच कीजिए कि क्या समुच्चय {1, 2, 3, 4, 5, 6} में R = {(a, b) : b = a + 1} द्वारा परिभाषित संबंध R स्वतुल्य, सममित या संक्रामक है।
सिद्ध कीजिए कि R में R = {(a, b) : a ≤ b}, द्वारा परिभाषित संबंध R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
जाँच कीजिए कि क्या R में R = {(a, b) : a ≤ b3} द्वारा परिभाषित संबंध स्वतुल्य, सममित अथवा संक्रामक हैं?
सिद्ध कीजिए कि समुच्चय {1, 2, 3} में R = {(1,2), (2,1)} द्वारा प्रदत्त संबंध R सममित है किंतु न तो स्वतुल्य है और न संक्रामक है।
सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में R = {(x, y) : x तथा y में पेजों की संख्या समान है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है।
सिद्ध कीजिए कि समुच्चय A = {x ∈ Z : 0 ≤ x ≤ 12}, में दिए गए निम्नलिखित संबंध R में से प्रत्येक एक तुल्यता संबंध है:
R = {(a, b) : |a - b|, 4 का एक गुणज है}, प्रत्येक दशा में 1 से संबंधित अवयवों को ज्ञात कीजिए।
ऐसे संबंध का उदाहरण दीजिए, जो सममित हो परंतु न तो स्वतुल्य हो और न संक्रामक हो।
ऐसे संबंध का उदाहरण दीजिए, जो संक्रामक हो परंतु न तो स्वतुल्य हो और न सममित हो।
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x तथा y एक ही मोहल्ले में रहते हैं}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x, y से ठीक-ठीक 7 सेमी लंबा है}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x, y की पत्नी है}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x, y के पिता हैं}
ऐसे संबंध का उदाहरण दीजिए, जो स्वतुल्य तथा सममित हो किंतु संक्रामक न हो।
ऐसे संबंध का उदाहरण दीजिए, जो स्वतुल्य तथा संक्रामक हो किंतु सममित न हो।
ऐसे संबंध का उदाहरण दीजिए, जो सममित तथा संक्रामक हो किंतु स्वतुल्य न हो।
सिद्ध कीजिए कि समस्त त्रिभुजों के समुच्चय A में, R = {(T1 T2) : T1 T2, के समरूप है} द्वारा परिभाषित संबंध R एक तुल्यता संबंध है। भुजाओं 3, 4, 5 वाले समकोण त्रिभुज T1 भुजाओं 5, 12, 13 वाले समकोण त्रिभुज T2, तथा भुजाओं 6, 8, 10 वाले समकोण त्रिभुज T3 पर विचार कीजिए। T1 T2 और T3 में से कौन से त्रिभुज परस्पर संबंधित हैं?
मान लीजिए कि XY-तल में स्थित समस्त रेखाओं का समुच्चय L है और L में R = {(L1, L2) : L1 समान्तर है L2 के} द्वारा परिभाषित संबंध R है। सिद्ध कीजिए कि R एक तुल्यता संबंध है। रेखा y = 2x + 4 से संबंधित समस्त रेखाओं का समुच्चय ज्ञात कीजिए।
यदि A = {1, 2, 3} हो तो ऐसे संबंध जिनमें अवयव (1, 2) तथा (1, 3) हों और जो स्वतुल्य तथा सममित हैं किंतु संक्रामक नहीं है, की संख्या है।
यदि A = {1, 2, 3} हो तो अवयव (1, 2) वाले तुल्यता संबंधों की संख्या है।