मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The Density of a Rod Gradually Decreases from One End to the Other. It is Pivoted at an End So that It Can Move About a Vertical Axis Though the Pivot - Physics

Advertisements
Advertisements

प्रश्न

The density of a rod gradually decreases from one end to the other. It is pivoted at an end so that it can move about a vertical axis though the pivot. A horizontal force F is applied on the free end in a direction perpendicular to the rod. The quantities, that do not depend on which end of the rod is pivoted, are ________________ .

पर्याय

  • angular acceleration

  • angular velocity when the rod completes one rotation

  • angular momentum when the rod completes one rotation

  • torque of the applied force

MCQ
रिकाम्या जागा भरा

उत्तर

torque of the applied force

 

The torque of the applied force does not depend on the density of a rod. It depend on the distance between the pivot and the point where is applied. So, it does not depend on which end of the rod is pivoted.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Rotational Mechanics - MCQ [पृष्ठ १९५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 10 Rotational Mechanics
MCQ | Q 7 | पृष्ठ १९५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the components along the x, y, z axes of the angular momentum of a particle, whose position vector is with components x, y, z and momentum is with components px, py and 'p_z`. Show that if the particle moves only in the x-y plane the angular momentum has only a z-component.


Explain why friction is necessary to make the disc in Figure roll in the direction indicated

(a) Give the direction of frictional force at B, and the sense of frictional torque, before perfect rolling begins.

(b) What is the force of friction after perfect rolling begins?


The torque of a force \[\overrightarrow F \] about a point is defined as \[\overrightarrow\Gamma  =  \overrightarrow r  \times  \overrightarrow F.\] Suppose \[\overrightarrow r, \overrightarrow F\] and \[\overrightarrow \Gamma\] are all nonzero. Is \[r \times  \overrightarrow\Gamma || \overrightarrow F\] always true? Is it ever true?


A body is in translational equilibrium under the action of coplanar forces. If the torque of these forces is zero about a point, is it necessary that it will also be zero about any other point?


A ladder is resting with one end on a vertical wall and the other end on a horizontal floor. If it more likely to slip when a man stands near the bottom or near the top?


Equal torques act on the disc A and B of the previous problem, initially both being at rest. At a later instant, the linear speeds of a point on the rim of A and another point on the rim of B are \[\nu_A\] and \[\nu_B\] respectively. We have


A simple pendulum of length l is pulled aside to make an angle θ with the vertical. Find the magnitude of the torque of the weight ω of the bob about the point of suspension. When is the torque zero?


Calculate the total torque acting on the body shown in the following figure about the point O.


A cubical block of mass m and edge a slides down a rough inclined plane of inclination θ with a uniform speed. Find the torque of the normal force acting on the block about its centre.


Two discs of the same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of the disc with angular velocities ω1 and ω2. They are brought in to contact face to face coinciding with the axis of rotation. The expression for loss of energy during this process is, ______


State conservation of angular momentum.


A particle of mass m is moving in yz-plane with a uniform velocity v with its trajectory running parallel to + ve y-axis and intersecting z-axis at z = a (Figure). The change in its angular momentum about the origin as it bounces elastically from a wall at y = constant is ______.


A Merry-go-round, made of a ring-like platform of radius R and mass M, is revolving with angular speed ω. A person of mass M is standing on it. At one instant, the person jumps off the round, radially away from the centre of the round (as seen from the round). The speed of the round afterwards is ______.


Figure shows two identical particles 1 and 2, each of mass m, moving in opposite directions with same speed v along parallel lines. At a particular instant, r1 and r2 are their respective position vectors drawn from point A which is in the plane of the parallel lines. Choose the correct options:

  1. Angular momentum l1 of particle 1 about A is l1 = mvd1
  2. Angular momentum l2 of particle 2 about A is l2 = mvr2
  3. Total angular momentum of the system about A is l = mv(r1 + r2)
  4. Total angular momentum of the system about A is l = mv (d2 − d1)

⊗ represents a unit vector coming out of the page.

⊗ represents a unit vector going into the page.


The net external torque on a system of particles about an axis is zero. Which of the following are compatible with it?

  1. The forces may be acting radially from a point on the axis.
  2. The forces may be acting on the axis of rotation.
  3. The forces may be acting parallel to the axis of rotation.
  4. The torque caused by some forces may be equal and opposite to that caused by other forces.

A uniform cube of mass m and side a is placed on a frictionless horizontal surface. A vertical force F is applied to the edge as shown in figure. Match the following (most appropriate choice):

(a) mg/4 < F < mg/2 (i) Cube will move up.
(b) F > mg/2 (ii) Cube will not exhibit motion.
(c) F > mg (iii) Cube will begin to rotate and slip at A.
(d) F = mg/4 (iv) Normal reaction effectively at a/3 from A, no motion.

Two discs of moments of inertia I1 and I2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω2 and ω2 are brought into contact face to face with their axes of rotation coincident.

  1. Does the law of conservation of angular momentum apply to the situation? why?
  2. Find the angular speed of the two-disc system.
  3. Calculate the loss in kinetic energy of the system in the process.
  4. Account for this loss.

The position vector of 1 kg object is `vecr = (3hati - hatj)` m and its velocity `vecv = (3hati + hatk)` ms-1. The magnitude of its angular momentum is `sqrtx` Nm where x is ______.


The magnitude of the torque on a particle of mass 1 kg is 2.5 Nm about the origin. If the force acting on it is 1 N, and the distance of the particle from the origin is 5 m, the angle between the force and the position vector is (in radians) ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×